
A bit of REST (Representational State Transfer)
Roy T. Fielding | Senior Principal Scientist, Adobe

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Warning

2

Ph.D. Dissertation 

REST

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Why talk about REST?

3

5

HATEOAS????

• One of REST’s four
architectural constraints

• The constraint RESTafarians
struggle most with

BUT…

• The MOST IMPORTANT
one… since hypermedia
applications are the
POINT of REST!

Copyright © 2012, ZapThink, a Dovèl Technologies Company

What is REST Anyway?

Copyright © 2012, ZapThink, a Dovèl Technologies Company

• Representational State
Transfer (REST) is a style of
software architecture for
distributed hypermedia
systems such as the
World Wide Web

• Roy Fielding
looked at the Web
and saw that it was good

BUZZWORD

Because

has become a

There’s nothing particularly wrong with that…
unless you happen to be me…
or working with me

Jun 93 Dec 93 Jun 94 Dec 94 Jun 95

130
623

2,738

10,022

23,517

Public WWW servers [Matthew Gray]
© 2015 Adobe Systems Incorporated. All Rights Reserved.

A bit of context: REST also began 20 years ago

4

Jun 93 Dec 93 Jun 94 Dec 94 Jun 95

130
623

2,738

10,022

23,517

Public WWW servers [Matthew Gray]

Using XMosaic

www.ics.uci.edu

wwwstat

MOMspider

Conditional GET

1st WWW

© 2015 Adobe Systems Incorporated. All Rights Reserved.

A bit of context: REST also began 20 years ago

4

Jun 93 Dec 93 Jun 94 Dec 94 Jun 95

130
623

2,738

10,022

23,517

Public WWW servers [Matthew Gray]

Using XMosaic

www.ics.uci.edu

wwwstat

MOMspider

Conditional GET

1st WWW

Relative URLs

HTML 2.0

2nd WWW

libwww-perl

© 2015 Adobe Systems Incorporated. All Rights Reserved.

A bit of context: REST also began 20 years ago

4

Jun 93 Dec 93 Jun 94 Dec 94 Jun 95

130
623

2,738

10,022

23,517

Public WWW servers [Matthew Gray]

Using XMosaic

www.ics.uci.edu

wwwstat

MOMspider

Conditional GET

1st WWW

Relative URLs

HTML 2.0

2nd WWW

HTTP editor

SJ IETF

libwww-perl

© 2015 Adobe Systems Incorporated. All Rights Reserved.

A bit of context: REST also began 20 years ago

4

Jul 2015: 849,602,745  
 (36,127x)

© 2015 Adobe Systems Incorporated. All Rights Reserved.

We all know about REST in ColdFusion, right?

5

Adobe ColdFusion Documentation

© 2014 Adobe Systems Incorporated. All rights reserved. 27

Format for query
Format for struct
Format for component
Format for array
string, boolean, numeric, and date

Support for GZip encoding

Site-level REST application support
Option 1: autoregister Application Setting
Option 2: Registering a REST application using ColdFusion Administrator console

Option 3: Registering a REST application using the ColdFusion Admin API
Option 4: Registering a REST application using the restInitApplication method

Support for pluggable serializer and deserializer

ColdFusion 10 lets you create and publish REST (Representational State Transfer) services that can be consumed
by clients over HTTP/HTTPS request.

What is REST

The following URL takes you to the Java Tutorial that provides conceptual information on REST:
http://download.oracle.com/javaee/6/tutorial/doc/gijqy.html

REST and ColdFusion

You can create REST services by defining certain attributes in the tags , , and cfcomponent cffuntion cfargume
 and publish as REST resources.nt

* * Beyond having HTTP as a medium, the service lets you followFollows HTTP request-response model:
all HTTP norms. The components published as REST services can be consumed over HTTP/HTTPS request.
The REST services are identified with URI (Uniform Resource Identifier) and can be accessed from a web
page as well as by specifying the URI in the browser's address bar.
Supports all HTTP methods : The REST enabled CFCs support the following HTTP methods: , , GET POST P

, , , and .UT DELETE HEAD OPTIONS
Implicit handling of serialization/deserialization: ColdFusion natively supports JSON and XML
serialization/deserialization. So client applications can consume REST services by issuing HTTP/HTTPS
request. The response can either be serialized to XML or JSON format.
Publish web service as both REST service and WSDL service: You can create and publish the same
ColdFusion component as a REST service and WSDL service.

Creating the REST web service

You can create and publish a ColdFusion component or any functions in a component as REST resource.
To create a CFC as REST web service, specify either of the following in the tag : orcfcomponent restPath

.rest
In , set the attribute to for the functions that you have to expose as RESTcffunction access remote
resource.

Example

Adobe ColdFusion Documentation [Sep 2014]:

© 2015 Adobe Systems Incorporated. All Rights Reserved.

We all know about REST in ColdFusion, right?

5

Adobe ColdFusion Documentation

© 2014 Adobe Systems Incorporated. All rights reserved. 27

Format for query
Format for struct
Format for component
Format for array
string, boolean, numeric, and date

Support for GZip encoding

Site-level REST application support
Option 1: autoregister Application Setting
Option 2: Registering a REST application using ColdFusion Administrator console

Option 3: Registering a REST application using the ColdFusion Admin API
Option 4: Registering a REST application using the restInitApplication method

Support for pluggable serializer and deserializer

ColdFusion 10 lets you create and publish REST (Representational State Transfer) services that can be consumed
by clients over HTTP/HTTPS request.

What is REST

The following URL takes you to the Java Tutorial that provides conceptual information on REST:
http://download.oracle.com/javaee/6/tutorial/doc/gijqy.html

REST and ColdFusion

You can create REST services by defining certain attributes in the tags , , and cfcomponent cffuntion cfargume
 and publish as REST resources.nt

* * Beyond having HTTP as a medium, the service lets you followFollows HTTP request-response model:
all HTTP norms. The components published as REST services can be consumed over HTTP/HTTPS request.
The REST services are identified with URI (Uniform Resource Identifier) and can be accessed from a web
page as well as by specifying the URI in the browser's address bar.
Supports all HTTP methods : The REST enabled CFCs support the following HTTP methods: , , GET POST P

, , , and .UT DELETE HEAD OPTIONS
Implicit handling of serialization/deserialization: ColdFusion natively supports JSON and XML
serialization/deserialization. So client applications can consume REST services by issuing HTTP/HTTPS
request. The response can either be serialized to XML or JSON format.
Publish web service as both REST service and WSDL service: You can create and publish the same
ColdFusion component as a REST service and WSDL service.

Creating the REST web service

You can create and publish a ColdFusion component or any functions in a component as REST resource.
To create a CFC as REST web service, specify either of the following in the tag : orcfcomponent restPath

.rest
In , set the attribute to for the functions that you have to expose as RESTcffunction access remote
resource.

Example

JAX-RS (Jersey)  
Java API for RESTful Web Services

Adobe ColdFusion Documentation [Sep 2014]:

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Am I going to talk about ColdFusion's implementation of REST APIs and API Management?

6

REST  
is NOT an 

implementation

No,

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Three (very different) perspectives of the Web

7

Information

http://www.w3.org/TR/html4/

4/2/08 12:09 AM

 next table of contents elements attributes index

HTML 4.01 Specification

W3C Recommendation 24 December 1999

This version:

http://www.w3.org/TR/1999/REC-html401-19991224

(plain text [794Kb], gzip'ed tar archive of HTML files [371Kb], a .zip archive of HTML files

[405Kb], gzip'ed Postscript file [746Kb, 389 pages], gzip'ed PDF file [963Kb])

Latest version of HTML 4.01:

http://www.w3.org/TR/html401

Latest version of HTML 4:

http://www.w3.org/TR/html4

Latest version of HTML:

http://www.w3.org/TR/html

Previous version of HTML 4.01:

http://www.w3.org/TR/1999/PR-html40-19990824

Previous HTML 4 Recommendation:

http://www.w3.org/TR/1998/REC-html40-19980424

Editors:

Dave Raggett <dsr@w3.org>

Arnaud Le Hors, W3C

Ian Jacobs, W3C

Copyright ©1997-1999 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use

and software licensing rules apply.

Abstract

This specification defines the HyperText Markup Language (HTML), the publishing language of the

World Wide Web. This specification defines HTML 4.01, which is a subversion of HTML 4. In addition

to the text, multimedia, and hyperlink features of the previous versions of HTML (HTML 3.2 [HTML32]

and HTML 2.0 [RFC1866]), HTML 4 supports more multimedia options, scripting languages, style

sheets, better printing facilities, and documents that are more accessible to users with disabilities.

HTML 4 also takes great strides towards the internationalization of documents, with the goal of making

the Web truly World Wide.

HTML 4 is an SGML application conforming to International Standard ISO 8879 -- Standard

Generalized Markup Language [ISO8879].

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

Fielding, et al Standards Track [Page 1]

Network Working Group R. Fielding
Request for Comments: 2068 UC Irvine
Category: Standards Track J. Gettys
 J. C. Mogul
 DEC
 H. Frystyk
 T. Berners-Lee
 MIT/LCS
 January 1997

Hypertext Transfer Protocol -- HTTP/1.1

Status of this Memo
This document specifies an Internet standards track protocol for the Internet community, and requests

discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official

Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this

memo is unlimited.

Abstract
The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative,

hypermedia information systems. It is a generic, stateless, object-oriented protocol which can be used for

many tasks, such as name servers and distributed object management systems, through extension of its

request methods. A feature of HTTP is the typing and negotiation of data representation, allowing systems

to be built independently of the data being transferred.

HTTP has been in use by the World-Wide Web global information initiative since 1990. This specification

defines the protocol referred to as “HTTP/1.1”.

file://localhost/Users/fielding/ws/labs-webarch/uri/rfc/rfc3986.html

4/2/08 12:16 AM

Network Working Group T. Berners-Lee

Request for Comments: 3986 W3C/MIT

Obsoletes: 2732, 2396, 1808 R. Fielding

STD: 66 Day Software

Updates: 1738 L. Masinter

Category: Standards Track Adobe Systems

 January 2005

Uniform Resource Identifier (URI):
Generic Syntax

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community,
and requests discussion and suggestions for improvements. Please refer to the current
edition of the “Internet Official Protocol Standards” (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright © The Internet Society (2005). All Rights Reserved.

Abstract

A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an
abstract or physical resource. This specification defines the generic URI syntax and a
process for resolving URI references that might be in relative form, along with guidelines
and security considerations for the use of URIs on the Internet. The URI syntax defines a
grammar that is a superset of all valid URIs, allowing an implementation to parse the
common components of a URI reference without knowing the scheme-specific
requirements of every possible identifier. This specification does not define a generative
grammar for URIs; that task is performed by the individual specifications of each URI
scheme.

ProtocolsBrowsers

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Web Implementation (user view)

8

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Web Implementation (origin view)

9

Application Servers  
Dynamic Content

Centralized Data
RDBMS, NFS, SAN

Webservers/Gateways 
Accelerator Cache

User Agents

Intermediary 
Proxy Cache

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Web Architecture

10

$

$

$

$

$

$

$

$User Agents

Proxies Gateways Origin Servers

Architecture is a vertical abstraction on implementation

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Web Architecture

11

http://www.w3.org/TR/html4/

4/2/08 12:09 AM

 next table of contents elements attributes index

HTML 4.01 Specification

W3C Recommendation 24 December 1999

This version:

http://www.w3.org/TR/1999/REC-html401-19991224

(plain text [794Kb], gzip'ed tar archive of HTML files [371Kb], a .zip archive of HTML files

[405Kb], gzip'ed Postscript file [746Kb, 389 pages], gzip'ed PDF file [963Kb])

Latest version of HTML 4.01:

http://www.w3.org/TR/html401

Latest version of HTML 4:

http://www.w3.org/TR/html4

Latest version of HTML:

http://www.w3.org/TR/html

Previous version of HTML 4.01:

http://www.w3.org/TR/1999/PR-html40-19990824

Previous HTML 4 Recommendation:

http://www.w3.org/TR/1998/REC-html40-19980424

Editors:

Dave Raggett <dsr@w3.org>

Arnaud Le Hors, W3C

Ian Jacobs, W3C

Copyright ©1997-1999 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use

and software licensing rules apply.

Abstract

This specification defines the HyperText Markup Language (HTML), the publishing language of the

World Wide Web. This specification defines HTML 4.01, which is a subversion of HTML 4. In addition

to the text, multimedia, and hyperlink features of the previous versions of HTML (HTML 3.2 [HTML32]

and HTML 2.0 [RFC1866]), HTML 4 supports more multimedia options, scripting languages, style

sheets, better printing facilities, and documents that are more accessible to users with disabilities.

HTML 4 also takes great strides towards the internationalization of documents, with the goal of making

the Web truly World Wide.

HTML 4 is an SGML application conforming to International Standard ISO 8879 -- Standard

Generalized Markup Language [ISO8879].

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

Fielding, et al Standards Track [Page 1]

Network Working Group R. Fielding
Request for Comments: 2068 UC Irvine
Category: Standards Track J. Gettys
 J. C. Mogul
 DEC
 H. Frystyk
 T. Berners-Lee
 MIT/LCS
 January 1997

Hypertext Transfer Protocol -- HTTP/1.1

Status of this Memo
This document specifies an Internet standards track protocol for the Internet community, and requests

discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official

Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this

memo is unlimited.

Abstract
The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative,

hypermedia information systems. It is a generic, stateless, object-oriented protocol which can be used for

many tasks, such as name servers and distributed object management systems, through extension of its

request methods. A feature of HTTP is the typing and negotiation of data representation, allowing systems

to be built independently of the data being transferred.

HTTP has been in use by the World-Wide Web global information initiative since 1990. This specification

defines the protocol referred to as “HTTP/1.1”.

file://localhost/Users/fielding/ws/labs-webarch/uri/rfc/rfc3986.html

4/2/08 12:16 AM

Network Working Group T. Berners-Lee

Request for Comments: 3986 W3C/MIT

Obsoletes: 2732, 2396, 1808 R. Fielding

STD: 66 Day Software

Updates: 1738 L. Masinter

Category: Standards Track Adobe Systems

 January 2005

Uniform Resource Identifier (URI):
Generic Syntax

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community,
and requests discussion and suggestions for improvements. Please refer to the current
edition of the “Internet Official Protocol Standards” (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright © The Internet Society (2005). All Rights Reserved.

Abstract

A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an
abstract or physical resource. This specification defines the generic URI syntax and a
process for resolving URI references that might be in relative form, along with guidelines
and security considerations for the use of URIs on the Internet. The URI syntax defines a
grammar that is a superset of all valid URIs, allowing an implementation to parse the
common components of a URI reference without knowing the scheme-specific
requirements of every possible identifier. This specification does not define a generative
grammar for URIs; that task is performed by the individual specifications of each URI
scheme.

Protocols

Web protocols define that vertical abstraction on implementation

© 2015 Adobe Systems Incorporated. All Rights Reserved.

So, is REST the Web Architecture?

12

REST  
is NOT an 

architecture!

No,

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Original proposal for the World Wide Web

13

This
document"Hypertext"

Linked
information

Hypermedia

CERNDOC

ENQUIRE

Tim
Berners-Lee

section

group

C.E.R.N

wrote

 division

Hierarchical
systems

for example

for example

describes

includes

for example

A
Proposal
"Mesh"

Hyper
Card uucp

News

IBM
GroupTalk

VAX/
NOTES

Computer
conferencing

describes

includes

includes

Comms
ACM

describes
refers

to

describes

etc

group

unifies

[Berners-Lee, 1989]

This
document"Hypertext"

Linked
information

Hypermedia

CERNDOC

ENQUIRE

Tim
Berners-Lee

section

group

C.E.R.N

wrote

 division

Hierarchical
systems

for example

for example

describes

includes

for example

A
Proposal
"Mesh"

Hyper
Card uucp

News

IBM
GroupTalk

VAX/
NOTES

Computer
conferencing

describes

includes

includes

Comms
ACM

describes
refers

to

describes

etc

group

unifies

© 2015 Adobe Systems Incorporated. All Rights Reserved.

The Web is an application integration system

14

[Berners-Lee, 1989]

This
document"Hypertext"

Linked
information

Hypermedia

CERNDOC

ENQUIRE

Tim
Berners-Lee

section

group

C.E.R.N

wrote

 division

Hierarchical
systems

for example

for example

describes

includes

for example

A
Proposal
"Mesh"

Hyper
Card uucp

News

IBM
GroupTalk

VAX/
NOTES

Computer
conferencing

describes

includes

includes

Comms
ACM

describes
refers

to

describes

etc

group

unifies

© 2015 Adobe Systems Incorporated. All Rights Reserved.

The Web is an application integration system

14

[Berners-Lee, 1989]

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Network-based Applications

• Application
§ short for “applying a computer to accomplish a given purpose”
§examples: finding a document, managing a bank account, or buying a travel ticket 

• Network-based
§operating over the network with full knowledge of the user
§ i.e., unlike distributed, which intentionally hides the network

15

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Architectural Styles

§A horizontal abstraction across multiple architectures (vertical abstractions)
§ names a repeated architectural pattern
§ defined by its design constraints
§ chosen for the properties they induce

§ REST is an architectural style
§ for network-based applications
§ to induce a specific set of architectural properties
§ desired for the World Wide Web

16

Ionic Order

© 2015 Adobe Systems Incorporated. All Rights Reserved.

REST is an accumulation of design constraints that induce architectural properties

17

85

the disadvantages) of the optional constraints when they are known to be in effect for some

realm of the overall system. For example, if all of the client software within an

organization is known to support Java applets [45], then services within that organization

can be constructed such that they gain the benefit of enhanced functionality via

downloadable Java classes. At the same time, however, the organization’s firewall may

prevent the transfer of Java applets from external sources, and thus to the rest of the Web

it will appear as if those clients do not support code-on-demand. An optional constraint

allows us to design an architecture that supports the desired behavior in the general case,

but with the understanding that it may be disabled within some contexts.

5.1.8 Style Derivation Summary

REST consists of a set of architectural constraints chosen for the properties they induce on

candidate architectures. Although each of these constraints can be considered in isolation,

describing them in terms of their derivation from common architectural styles makes it

Figure 5-9. REST Derivation by Style Constraints

RR CS LS VM U

CSS LCS COD$

C$SS LC$SS LCODC$SS REST

replicated

on-demand

separated

layered

mobile

uniform interface

stateless

shared

intermediate

processing

cacheable

extensible

simple

reusable

scalable

reliable

multi-
org.

visible

programmable

© 2015 Adobe Systems Incorporated. All Rights Reserved.

REST is an accumulation of design constraints that induce architectural properties

17

85

the disadvantages) of the optional constraints when they are known to be in effect for some

realm of the overall system. For example, if all of the client software within an

organization is known to support Java applets [45], then services within that organization

can be constructed such that they gain the benefit of enhanced functionality via

downloadable Java classes. At the same time, however, the organization’s firewall may

prevent the transfer of Java applets from external sources, and thus to the rest of the Web

it will appear as if those clients do not support code-on-demand. An optional constraint

allows us to design an architecture that supports the desired behavior in the general case,

but with the understanding that it may be disabled within some contexts.

5.1.8 Style Derivation Summary

REST consists of a set of architectural constraints chosen for the properties they induce on

candidate architectures. Although each of these constraints can be considered in isolation,

describing them in terms of their derivation from common architectural styles makes it

Figure 5-9. REST Derivation by Style Constraints

RR CS LS VM U

CSS LCS COD$

C$SS LC$SS LCODC$SS REST

replicated

on-demand

separated

layered

mobile

uniform interface

stateless

shared

intermediate

processing

cacheable

extensible

simple

reusable

scalable

reliable

multi-
org.

visible

programmable

Constraint

© 2015 Adobe Systems Incorporated. All Rights Reserved.

REST is an accumulation of design constraints that induce architectural properties

17

85

the disadvantages) of the optional constraints when they are known to be in effect for some

realm of the overall system. For example, if all of the client software within an

organization is known to support Java applets [45], then services within that organization

can be constructed such that they gain the benefit of enhanced functionality via

downloadable Java classes. At the same time, however, the organization’s firewall may

prevent the transfer of Java applets from external sources, and thus to the rest of the Web

it will appear as if those clients do not support code-on-demand. An optional constraint

allows us to design an architecture that supports the desired behavior in the general case,

but with the understanding that it may be disabled within some contexts.

5.1.8 Style Derivation Summary

REST consists of a set of architectural constraints chosen for the properties they induce on

candidate architectures. Although each of these constraints can be considered in isolation,

describing them in terms of their derivation from common architectural styles makes it

Figure 5-9. REST Derivation by Style Constraints

RR CS LS VM U

CSS LCS COD$

C$SS LC$SS LCODC$SS REST

replicated

on-demand

separated

layered

mobile

uniform interface

stateless

shared

intermediate

processing

cacheable

extensible

simple

reusable

scalable

reliable

multi-
org.

visible

programmable

Property

[p
ho

to
 b

y
dh

es
te

r:
htt

p:
//

m
rg

.b
z/

xV
Lm

r1]

http://mrg.bz/xVLmr1%5D

[p
ho

to
 b

y
Em

m
iP

: h
ttp

://
m

rg
.b

z/
P7

BJ
Ri

]

[p
ho

to
 b

y
ru

pe
rt

je
ffe

rie
s:

htt
p:

//
m

rg
.b

z/
Y9

XTh
f]

© 2015 Adobe Systems Incorporated. All Rights Reserved.

REST’s Five Uniform Interface Constraints

§All important resources are identified by one resource identifier mechanism
§ induces simple, visible, reusable, stateless communication

§Access methods have the same semantics for all resources
§ induces visible, scalable, available through layered system, cacheable, and shared caches

§Resources are manipulated through the exchange of representations
§ induces simple, visible, reusable, cacheable, and evolvable (information hiding)

§Representations are exchanged via self-descriptive messages
§ induces visible, scalable, available through layered system, cacheable, and shared caches
§ induces evolvable via extensible communication

§Hypertext as the engine of application state
§ induces simple, visible, reusable, and cacheable through data-oriented integration
§ induces evolvable (loose coupling) via late binding of application transitions

21

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Why the hypermedia constraint?

Hypertext as the Engine of Application State

 

each state can be dynamic 
each transition can be redirected

22

S0 S2S1 S3R o y
*

*

© 2015 Adobe Systems Incorporated. All Rights Reserved.

The client only needs to know one state and its transitions!

Follow Your Nose

23

S0 SS1 SR o y
*

*

© 2015 Adobe Systems Incorporated. All Rights Reserved.

The client only needs to know one state and its transitions!

Follow Your Nose

24

S0 S2S1 SR o y
*

*

© 2015 Adobe Systems Incorporated. All Rights Reserved.

The client only needs to know one state and its transitions!

Follow Your Nose

25

S0 S2S S3R o y
*

*

© 2015 Adobe Systems Incorporated. All Rights Reserved.

The client only needs to know one state and its transitions!

Follow Your Nose

26

S SS S3R o y
*

*

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Know Your Audience

REST 
emphasizes evolvability

to sustain an uncontrollable system

If you think you have control over the system
or aren’t interested in evolvability,

don’t waste your time arguing about REST

27

© 2015 Adobe Systems Incorporated. All Rights Reserved.

What is the most common question about REST?

28

REST  
API?

So, where is your …

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Sorry, it's not that simple

An API that 
provides network-based access to resources  

via a uniform interface of self-descriptive messages  
containing hypertext to indicate potential state transitions 

might 
be part of an overall system that is  

a RESTful application

29

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Some tips for building an API for RESTful applications

§ Identify all of the resources
§ few resources are atomic; most are collections or views of other resources
§ don't confuse identity (naming) with containment (storage)
§ use access control, not obscurity, to control publication
§ resources have more in common with stored procedures than they do with records or files

§ Iteratively develop resources and state transitions (use cases)
§ don't try to do everything at once
§ don't make any assumptions about received content, order, versioning, etc.

§Be flexible regarding media types and access protocols
§ start by prototyping in HTML and exploring with browsers and spiders
§ if you need to publish JSON, use a profile that defines hypertext semantics
§ use relative URLs wherever possible (to save space and improve portability)

30

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Don’t over-think the problem space

a RESTful API is just a website 
for users with a limited vocabulary 
(machine to machine interaction)

31

© 2015 Adobe Systems Incorporated. All Rights Reserved.

Don’t under-think the problem space

building a good website 
is not easy 

(but it has been done before)

32

© 2015 Adobe Systems Incorporated. All Rights Reserved.

So, what does that mean for ColdFusion?

Why are we using an API designed by Sun/Oracle 
to build a website?

33

© 2015 Adobe Systems Incorporated. All Rights Reserved.

So, what does that mean for ColdFusion?

Why are we using an API designed by Sun/Oracle 
to build a website?

Wouldn't it be better to use 
a language for rapid application development 

that could automatically select its output serialization 
to match the media type in which it is embedded?

33

© 2015 Adobe Systems Incorporated. All Rights Reserved.

