
July 15, 1999
Software Architectural Styles for
Network-based Applications

Roy T. Fielding
University of California, Irvine

Phase II Survey Paper

Draft 1.1
-
of
nica-
rk
e in
 failure

a-
.
style
rties

op-
ing
tional

are
A software architecture determines how system components are identified and allo
cated, how the components interact to form a system, the amount and granularity
communication needed for interaction, and the interface protocols used for commu
tion. For a network-based application, system performance is dominated by netwo
communication. Therefore, selection of the appropriate architectural style(s) for us
designing the software architecture can make the difference between success and
in the deployment of a network-based application.

Software architectural styles have been characterized by their control-flow and dat
flow patterns, allocation of functionality across components, and component types
Unfortunately, none of these characterizations are useful for understanding how a
influences the set of architectural properties, or qualities, of a system. These prope
include, among others, user-perceived performance, network efficiency, simplicity,
modifiability, scalability, and portability. We use these style-induced architectural pr
erties to classify styles for network-based applications with the goal of understand
why certain styles are better than others for some applications, thus providing addi
guidance for software engineers faced with the task of architectural design.

Keywords

software architecture, software architectural style, network-based application, softw
design, software design patterns, pattern languages
1

t for

 which

es
ts are
les
ri-

lines
ization
been
ior.
on
ation
tion
 that

s of
of the
 for
kson,
e

ility to
ased

and
tion 3
y
efines
n of
 5,

as of
va-

gree-
archi-
arch
ering
1 Introduction

Excuse me ... did you say ‘knives’?

— City Gent #1 (Michael Palin), The Architects Sketch [Python, 1970]

As predicted by Perry and Wolf [1992], software architecture has been a focal poin
software engineering research in the 1990s. The complexity of modern software
systems have necessitated a greater emphasis on componentized systems within
the details of an implementation can be hidden.

Architecture is found at multiple levels within software systems. This paper examin
the highest level of software architecture, where the interactions among componen
capable of being realized in network communication. We limit our discussion to sty
for network-based application architectures in order to reduce the dimensions of va
ance within the classification. In addition, focusing on a particular type of software
allows us to identify the advantages of one style over another.

This survey is intended to explore a gap on the frontier between two research discip
in computer science. Software research has long been concerned with the categor
of software designs and the development of design methodologies, but has rarely
able to objectively evaluate the impact of various design choices on system behav
Networking research, in contrast, is focused on the details of generic communicati
behavior between systems and improving the performance of particular communic
techniques, often ignoring the fact that changing the interaction style of an applica
can have more impact on performance than the communication protocols used for
interaction.

Some architectural styles are often portrayed as “silver bullet” solutions for all form
software. However, a good designer should select a style that matches the needs
particular problem being solved [Shaw, 1995]. Choosing the right architectural style
a network-based application requires an understanding of the problem domain [Jac
1994] and thereby the communication needs of the application, an awareness of th
variety of architectural styles and the particular concerns they address, and the ab
anticipate the sensitivity of each interaction style to the characteristics of network-b
communication [Waldo et al., 1994].

Section 2 examines the various definitions of architecture and architectural styles
defines those terms which will be used throughout the remainder of this paper. Sec
describes what is intended by network-based application architectures, and thereb
defines the scope of this survey. Section 4 describes the survey methodology and d
the style-induced architectural properties used for style comparison. A classificatio
software architectural styles for network-based applications is presented in Section
followed in Section 6 by a discussion of related work within the larger research are
software architecture and distributed systems. Finally, I conclude with some obser
tions on the relevance of this work to software engineering research and practice.

2 Context within Software Architecture Research

In spite of the interest in software architecture as a field of research, there is little a
ment among researchers as to what exactly should be included in the definition of
tecture. Also, some aspects of architectural design have been ignored by the rese
labeled software architecture. This section examines how current software engine
2 Software Architectural Styles for Network-based Applications

 those

itec-
ft-

lation-
le
e

f

ion
nded

Does
tain
ties
ance
as the
ties
 of

ed,
re
i-

e. An

stem
o-
cture
nts of
ora-

ture

mic

it a
sis of
to do
research defines software architecture and architectural styles, and then redefines
terms for our own usage with respect to network-based application architectures.

2.1 Software Architecture

A comprehensive examination of the scope and intellectual basis for software arch
ture can be found in Perry and Wolf [1992]. They present a model that defines a so
ware architecture as a set of architectural elements that have a particular form,
explicated by a set of rationale. Architectural elements include processing, data, and
connecting elements. Form is defined by the properties of the elements and the re
ships among the elements — that is, the constraints on the elements. The rationa
provides the underlying basis for the architecture by capturing the motivation for th
choice of architectural style, the choice of elements, and the form.

Although rationale is an important aspect of software architecture research, and o
architectural description in particular, including rationale as part of the architecture
itself is questionable. At first glance, this would seem to imply that the documentat
of system requirements would be part of the architecture. However, I think the inte
relationship between rationale and architecture is more subtle. As an illustration,
consider what happens to a building if its blueprints and design plans are burned.
the building immediately collapse? No, since the properties by which the walls sus
the weight of the roof remain intact. An architecture has, by design, a set of proper
that allow it to meet, or perhaps exceed, the system requirements. However, ignor
of those properties may lead to later changes which violate the architecture, such
replacement of a load-bearing wall with a large window frame. In summary, proper
are an aspect of the architecture, a rationale explicates those properties, and lack
rationale may result in gradual decay or degradation of the architecture over time.

A key feature of the model in Perry and Wolf [1992] is their distinction between the
various element types. Processing elements are those that perform transformations on
data, data elements are those that contain the information that is used and transform
and connecting elements are the glue that holds the different pieces of the architectu
together. Interestingly, the notion of data elements is missing from most other defin
tions of software architecture.

Garlan and Shaw [1993] describe software architecture vaguely as system structur
architecture of a specific system is a collection of computational components together
with a description of the interactions between these components—the connectors. This
definition is expanded upon in Shaw et al. [1995]: The architecture of a software sy
defines that system in terms of components and of interactions among those comp
nents. In addition to specifying the structure and topology of the system, the archite
shows the intended correspondence between the system requirements and eleme
the constructed system (what Perry and Wolf [1992] called rationale). Further elab
tion of this definition can be found in Shaw and Garlan [1996].

What is surprising about the Shaw et al. [1995] definition is that it isn’t defining the
software’s architecture; rather, it is defining a description of the software’s architec
as if that were the architecture. In the process, software architecture as a whole is
reduced to what is commonly found in most informal architecture diagrams: boxes
(components) and lines (connectors). Data elements, along with many of the dyna
aspects of real software architectures, are ignored.

Naturally, there is one benefit of conflating the architecture with its description, albe
cynical one: formal analysis of the description can then be equated to formal analy
the architecture. The bulk of published work in software architecture research has
Software Architectural Styles for Network-based Applications 3

n

f
s of

rious
 the
le

fini-

the
stin-

his is
hat
es,
what
time
re

s to

n
cus
de by

t a

 will
ystem
 they
y be

archi-
decom-

tem
r data
em

hitec-
start-
with formal architectural descriptions and the notations or languages for descriptio
(Section 6.7 contains a summary this related work).

Abowd et al. [1995] define architectural description as supporting the description o
systems in terms of three basic syntactic classes: components, which are the locu
computation; connectors, which define the interactions between components; and
configurations, which are collections of interacting components and connectors. Va
style-specific concrete notations may be used to represent these visually, facilitate
description of legal computations and interactions, and constrain the set of desirab
systems.

Strictly speaking, one might think of a configuration as being equivalent to a set of
specific constraints on component interaction, and thus already covered by the de
tions of software architecture above. For example, Perry and Wolf [1992] include
topology in their definition of architectural form relationships. However, separating
active topology from more general constraints allows an architect to more easily di
guish the active configuration from the potential domain of all legal configurations.
Additional rationale for distinguishing configurations within architectural description
languages is presented in Medvidovic and Taylor [1997].

Perry and Wolf [1992] define processing elements as “transformers of data,” while
Shaw et al. [1995] describe components as “the locus of computation and state.” T
further clarified in Shaw and Clements [1997]: “A component is a unit of software t
performs some function at run-time. Examples include programs, objects, process
and filters.” This raises an important distinction between software architecture and
is typically referred to as software structure: the former is an abstraction of the run-
behavior of a software system, whereas the latter is a property of the static softwa
source code. Although there are advantages to having the modular structure of the
source code match the decomposition of behavior within a running system, the two
should be considered separate design activities. Unfortunately, some research fail
make this distinction (e.g., [Bass et al, 1998]).

Boasson [1995] criticizes current software architecture research for its emphasis o
component structures and architecture development tools, suggesting that more fo
should be placed on data-centric architectural modeling. Similar comments are ma
Jackson [1994]. As will become clear in Section 5, the nature of the data elements
within a network-based application architecture will often determine whether or no
given architectural style is appropriate. This is further evident in the comparison of
mobile code design paradigms in Fuggetta et al. [1998].

All of the references that define software architecture recognize that a given system
have many layers of architecture. Each architecture represents an abstraction of s
behavior at that level, such that elements are delineated by the abstract interfaces
provide to other elements at that level [Bass et al., 1998]. Within each element ma
found another architecture, defining the system of subelements that implement the
behavior represented by the parent element’s abstract interface. This recursion of
tectures continues down to the most basic system elements: those that cannot be
posed into less abstract elements.

Perry and Wolf [1992] hint at another source for multiple architectures within a sys
when they mention that connecting elements may, at times, be either processing o
elements, or both. Although it isn’t explicitly mentioned elsewhere, a software syst
will often have multiple operational phases, such as start-up, initialization, normal
processing, reinitialization, and shutdown. Each operational phase has its own arc
ture. For example, a configuration file will be treated as a data element during the
4 Software Architectural Styles for Network-based Applications

that

l
ly the
chitec-

r of

ay
 its
nnec-

tion
,
ith
far as

ter-
men-

t.

ordi-
ples
tocols,

 or

at is

re
mpo-
 of

is to
t of

n be
 the
ego-
en-
up phase, but won’t be considered an element during normal processing, since at
point the information it contained will have already been distributed throughout the
system. It may, in fact, have defined the normal processing architecture. An overal
description of a system architecture must therefore be capable of describing not on
operational behavior of the system architecture during each phase, but also the ar
ture of transitions between phases.

Selecting from the above, the following terms will be used throughout the remainde
this paper:

software architecture. A software architecture is an abstraction of the run-time
behavior of a software system during some phase of its operation. A system m
consist of many levels of abstraction and many phases of operation, each with
own software architecture. A software architecture consists of components, co
tors, data, a configuration, and a set of architectural properties.

component. A component is an abstract unit of software that provides a transforma
of data via its interface. Example transformations include loading into memory
performing some calculation, translating to a different format, encapsulation w
other data, etc. The behavior of each component is part of the architecture inso
that behavior can be observed or discerned from the point of view of another
component [Bass et al., 1998]. In other words, a component is defined by its in
face and the services it provides to other components, rather than by its imple
tation behind the interface. Parnas [1971] would define this as the set of
assumptions that other architectural elements can make about the componen

connector. A connector is an abstract mechanism that mediates communication, co
nation, or cooperation among components [Shaw and Clements, 1997]. Exam
include shared representations, remote procedure calls, message-passing pro
and data streams.

datum. A datum is an element of information that is transferred from a component,
received by a component, via a connector. Examples include files, messages,
marshalled parameters, and serialized objects, but not including information th
permanently resident or hidden within a component.

configuration. A configuration is the structure of architectural relationships among
components, connectors, and data during some period of system run-time.

architectural properties. The set of architectural properties of a software architectu
includes those properties that derive from the selection and arrangement of co
nents, connectors, and data within the system. Examples include relative ease
evolution, reusability of components, efficiency, dynamic extensibility, and the
functional properties achieved by the system. The goal of architectural design
create an architecture with a set of architectural properties that form a superse
the system requirements.

2.2 Architectural Styles

Since an architecture embodies both functional and non-functional properties, it ca
difficult to directly compare architectures for different types of systems, or for even
same type of system set in different environments. Styles are a mechanism for cat
rizing architectures and for defining their common characteristics [Di Nitto and Ros
Software Architectural Styles for Network-based Applications 5

d by
s
aw,

nci-

 and

e
 the

ts.

aints
hitec-
f
trac-
5]

ret a

n-
rchi-

id
.

-
ern
t. A

age is
Kerth

h-
mpo-

cast as
 they

ase of
d set

ng a
.

blum, 1999]. An architectural style characterizes a family of systems that are relate
shared structural and semantic properties [Monroe et al., 1997]. Architectural style
provide an abstraction for the interactions of the components in an architecture [Sh
1990]. Each style captures the essence of a pattern of interaction by ignoring the i
dental details of the rest of the architecture.

Perry and Wolf [1992] define architectural style as an abstraction of element types
formal aspects from various specific architectures, perhaps concentrating on only
certain aspects of an architecture. An architectural style encapsulates important deci-
sions about the architectural elements and emphasizes important constraints on th
elements and their relationships. This definition allows for styles that focus only on
connectors of an architecture, or on specific aspects of the component interfaces.

In contrast, Garlan and Shaw [1993], Garlan et al. [1994], and Shaw and Clements
[1997] all define style in terms of a pattern of interactions among typed componen
Specifically, an architectural style determines the vocabulary of components and
connectors that can be used in instances of that style, together with a set of constr
on how they can be combined [Garlan and Shaw, 1993]. This restricted view of arc
tural styles is a direct result of their definition of software architecture — thinking o
architecture as a formal description, rather than as a running system, leads to abs
tions based only in the shared patterns of box and line diagrams. Abowd et al. [199
define this explicitly as viewing the collection of conventions that are used to interp
class of architectural descriptions as defining an architectural style.

New architectures can be defined as instances of specific styles [Di Nitto and Rose
blum, 1999]. Since architectural styles may address different aspects of software a
tecture, a given architecture may be composed of multiple styles. Likewise, a hybr
style can be formed by combining multiple basic styles into a single coherent style

2.3 Architectural Patterns and Pattern Languages

Each pattern describes a problem that occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice. [Alexander et al., 1977]

In parallel with the software engineering research in architectural styles, the object
oriented programming community has been exploring the use of patterns and patt
languages to describe recurring abstractions in object-based software developmen
pattern is defined as an important and recurring system construct. A pattern langu
a system of patterns organized in a structure that guides the patterns’ application [
and Cunningham, 1997].

The design space of patterns includes implementation concerns specific to the tec
niques of object-oriented programming, such as class inheritance and interface co
sition, as well as the higher-level design issues addressed by architectural styles
[Gamma et al., 1995]. In some cases, architectural style descriptions have been re
architectural patterns [Shaw, 1996]. However, the primary benefit of patterns is that
describe relatively complex protocols of interactions between objects as a single
abstraction [Monroe et al., 1997]. In general, a pattern, or pattern language in the c
multiple integrated patterns, can be thought of as a recipe for implementing a desire
of interactions among objects. In other words, a pattern defines a process for solvi
problem by following a path of design and implementation choices [Coplien, 1997]
6 Software Architectural Styles for Network-based Applications

tyles
ure
ews

ctions
essing
ation-

es
ion of
ture

or is

f
t that
 be a
 of
ppli-

ork-
entral-

ashion
 of the

iable
 cost

tures
ssing
sm
2.4 Architectural Views

An architectural viewpoint is often application-specific and varies widely
based on the application domain. ... we have seen architectural viewpoints that
address a variety of issues, including: temporal issues, state and control
approaches, data representation, transaction life cycle, security safeguards,
and peak demand and graceful degradation. No doubt there are many more
possible viewpoints. [Kerth and Cunningham, 1997]

In addition to the many architectures within a system, and the many architectural s
from which the architectures are composed, it is also possible to view an architect
from many different perspectives. Perry and Wolf [1992] describe three important vi
in software architecture: processing, data, and connection views. A process view
emphasizes the data flow through the components and some aspects of the conne
among the components with respect to the data. A data view emphasizes the proc
flow, with less emphasis on the connectors. A connection view emphasizes the rel
ship between components and the state of communication.

Multiple architectural views are common within case studies of specific architectur
[Bass et al., 1998]. One architectural design methodology is based on the product
different views. The 4+1 View Model organizes a description of a software architec
using five concurrent views, each of which addresses a specific set of concerns
[Kruchten, 1995].

3 Network-based Application Architectures

A survey of architectural styles cannot cover every type of software in existence, n
there an incentive for doing so. The primary value of a survey such as this one is to
provide design guidance during the creation of an architecture for a specific type o
problem. Restricting the scope of the survey reduces the variability of styles to a se
can be reasonably compared against a system’s requirements. Ideally, there would
survey available for each particular problem, but that is impractical given the range
software applications. This survey restricts itself to the domain of network-based a
cation architectures.

3.1 Network-based vs. Distributed

Tanenbaum et al. [1985] make a distinction between distributed systems and netw
based systems: a distributed system is one that looks to its users like an ordinary c
ized system, but runs on multiple, independent CPUs. In contrast, network-based
systems are those capable of operation across a network, but not necessarily in a f
that is transparent to the user. In some cases it is desirable for the user to be aware
difference between an action that requires a network request and one that is satisf
on their local system, particularly when network usage implies an extra transaction
[Waldo et al., 1994].

The primary distinction between network-based architectures and software architec
in general is that communication between components is restricted to message pa
[Andrews, 1991], or the equivalent of message passing if a more efficient mechani
can be selected at run-time based on the location of components.
Software Architectural Styles for Network-based Applications 7

lica-

s
re”

ich
le, a

g
ard
luate
 of
tential
 per

ad,
cific
 of a
.

 or
the
nd.
ral

 this
en

s

tails
ed (or

ing
ed
s
s). It

hen-
rmed
The
tified
3.2 Application Software vs. Networking Software

Another restriction on the scope of this survey is that we limit our discussion to app
tion architectures, excluding the operating system, networking software, and some
architectural styles that would only use a network for system support (e.g., proces
control styles [Garlan and Shaw, 1993]). Applications represent the “business-awa
functionality of a system [Umar, 1997].

Application software architecture is an abstraction level of an overall system, in wh
the goals of a user action are representable as architectural properties. For examp
hypermedia application must be concerned with the location of information pages,
performing requests, and rendering data streams. This is in contrast to a networkin
abstraction, where the goal is to move bits from one location to another without reg
to why those bits are being moved. It is only at the application level that we can eva
design trade-offs based on the number of interactions per user action, the location
application state, the effective throughput of all data streams (as opposed to the po
throughput of a single data stream), the extent of communication being performed
user action, etc.

Architectural styles, however, do not generally include application knowledge. Inste
we focus on the architectural properties that a style induces on a system. The spe
needs of a network-based application can then be matched against the properties
given style in order to determine the style’s suitability for use within an architecture

4 Classification Methodology

The purpose of building software is not to create a specific topology of interactions
use a particular component type — it is to create a system that meets or exceeds
application needs. The style must conform to those needs, not the other way arou
Therefore, in order to provide useful design guidance, a classification of architectu
styles should be based on the architectural properties induced by those styles.

4.1 Visualization

I use a table of style versus architectural properties as the primary visualization for
classification. The table values indicate the relative influence that the style for a giv
row has on a column’s property. Minus (−−−−) symbols accumulate for negative influence
and plus (++++) symbols for positive, with plus-minus (±±±±) indicating that it depends on
some aspect of the problem domain. Although this is a gross simplification of the de
presented in each section, it does indicate the degree to which a style has address
ignored) an architectural property.

An alternative visualization would be a property-based derivation graph for classify
architectural styles. The styles would be classified according to how they are deriv
from other styles, with the arcs between styles illustrated by architectural propertie
gained or lost. The starting point of the graph would be the null style (no constraint
is possible to derive such a graph directly from the descriptions in Section 5.

4.2 Selection of Architectural Styles for Classification

The set of architectural styles included in the classification is by no means compre
sive of all possible network-based application styles. Indeed, a new style can be fo
merely by adding a new architectural constraint to any one of the styles surveyed.
goal is to describe a representative sample of styles, particularly those already iden
8 Software Architectural Styles for Network-based Applications

rac-
ased
a
rtunis-
-
on are
ions

ugh

cture
 al.,
,
] to

tion
 to a
er-
s
nts

y
only
vey.
ral
 one

use

ture
iffer-
n.

ture,
not
ires
annot
effi-
 the

ster
 data.
within the software architecture literature, and provide a framework by which other
styles can be added to the classification as they are developed.

I have intentionally excluded styles that do not enhance the communication or inte
tion properties when combined with one of the surveyed styles to form a network-b
application. For example, the blackboard architectural style [Nii, 1986] consists of
central repository and a set of components (knowledge sources) that operate oppo
tically upon the repository. A blackboard architecture can be extended to a network
based system by distributing the components, but the properties of such an extensi
entirely based on the interaction style chosen to support the distribution — notificat
via event-based integration, polling a la client-server, or replication of the repository.
Thus, there would be no added value from including it in the classification even tho
the hybrid style is network-capable.

4.3 Style-induced Architectural Properties

As described in Section 2.1, the set of architectural properties of a software archite
includes both functional properties and the equivalent of quality attributes [Bass et
1998]. A quality attribute can be induced by the constraints of an architectural style
usually motivated by applying a software engineering principle [Ghezzi et al., 1991
an aspect of the architectural elements. For example, the uniform pipe-and-filter style
obtains the qualities of reusability of components and configurability of the applica
by applying generality to its component interfaces — constraining the components
single interface type. Hence, the architectural constraint is “uniform component int
face,” motivated by the generality principle, in order to obtain two desirable qualitie
that will become the architectural properties of reusable and configurable compone
when that style is instantiated within an architecture.

This section describes the architectural properties used to differentiate and classif
architectural styles in this survey. This is not a comprehensive list; I have included
those properties that are clearly influenced by the restricted set of styles in this sur
All of the architectural properties are relative in the sense that adding an architectu
constraint may improve or reduce a given property, or even simultaneously improve
aspect of the property and reduce some other aspect of the property. Likewise,
improving one property may lead to the reduction of another.

4.3.1 Performance

One of the main reasons to focus on styles for network-based applications is beca
component interactions can be the dominant factor in determining user-perceived
performance and network efficiency. Since the architectural style influences the na
of those interactions, selection of an appropriate architectural style can make the d
ence between success and failure in the deployment of a network-based applicatio

The performance of a network-based application is bound first by the application
requirements, then by the chosen interaction style, followed by the realized architec
and finally by the implementation of each component. In other words, software can
avoid the basic cost of achieving the application needs; e.g., if the application requ
that data be located on system A and processed on system B, then the software c
avoid moving that data from A to B. Likewise, an architecture cannot be any more
cient than its interaction style allows; e.g., the cost of multiple interactions to move
data from A to B cannot be any less than that of a single interaction from A to B.
Finally, regardless of the quality of an architecture, no interaction can take place fa
than a component implementation can produce data and its recipient can consume
Software Architectural Styles for Network-based Applications 9

nents.
, a

 per
ongly

that
 the
ut of

ct on
infor-
mple-

se.
ction:
n; 2)
ed to
inter-
r and

esent
tyle.

ion
en an
ion is
t can

eived

sen-

tion
 so,

), or
er to

ution
-

Network Performance. Network performance measures are used to describe some
attributes of communication. Throughput is the rate at which information, including
both application data and communication overhead, is transferred between compo
Overhead can be separated into initial setup overhead and per-interaction overhead
distinction which is useful for identifying connectors that can share setup overhead
across multiple interactions (amortization). Bandwidth is a measure of the maximum
available throughput over a given network link. Usable bandwidth refers to that portion
of bandwidth which is actually available to the application.

Styles impact network performance by their influence on the number of interactions
user action and the granularity of data elements. A style that encourages small, str
typed interactions will be efficient in an application involving small data transfers
among known components, but will cause excessive overhead within applications
involve large data transfers or negotiated interfaces. Likewise, a style that involves
coordination of multiple components arranged to filter a large data stream will be o
place in an application that requires many small control messages.

User-perceived Performance. User-perceived performance differs from network
performance in that the performance of an action is measured in terms of its impa
the user in front of an application rather than the rate at which the network moves
mation. The primary measures for user-perceived performance are latency and co
tion time.

Latency is the time period between initial stimulus and the first indication of a respon
Latency occurs at several points in the processing of a network-based application a
1) the time needed for the application to recognize the event that initiated the actio
the time required to setup the interactions between components; 3) the time requir
transmit each interaction to the components; 4) the time required to process each
action on those components; and, 5) the time required to complete sufficient transfe
processing of the result of the interactions before the application is able to begin
rendering a usable result. It is important to note that, although only (3) and (5) repr
actual network communication, all five points can be impacted by the architectural s
Furthermore, multiple interactions are additive to latency unless they take place in
parallel.

Completion is the amount of time taken to complete an application action. Complet
time is dependent upon all of the aforementioned measures. The difference betwe
action’s completion time and its latency represents the degree to which the applicat
incrementally processing the data being received. For example, a Web browser tha
render a large image while it is being received provides significantly better user-
perceived performance than one that waits until the entire image is completely rec
prior to rendering, even though both experience the same network performance.

Network Efficiency. An interesting observation about network-based applications is
that the best application performance is obtained by not using the network. This es
tially means that the most efficient architectural styles for a network-based applica
are those that can effectively minimize use of the network when it is possible to do
through reuse of prior interactions (caching), reduction of the frequency of network
interactions in relation to user actions (replicated data and disconnected operation
by removing the need for some interactions by moving the processing of data clos
the source of the data (mobile code).

The impact of the various performance issues is often related to the scope of distrib
for the application. The benefits of a style under local conditions may become draw
10 Software Architectural Styles for Network-based Applications

med
 a
rk
re a

o-
 can
po-
a-
ation
ts.

ction
us or

., can

e
nts.
lly
h
n to
al

ity,
ads

archi-

ere
the
tches
iety
lica-
t be

ded

ion
f
d by
l
backs when faced with global conditions. Thus, the properties of a style must be fra
in relation to the interaction distance: within a single process, across processes on
single host, inside a local-area network (LAN), or spread across a wide-area netwo
(WAN). Additional concerns become evident when interactions across a WAN, whe
single organization is involved, are compared to interactions across the Internet,
involving multiple trust boundaries.

4.3.2 Scalability

Scalability refers to the ability of the architecture to support large numbers of comp
nents, or interactions among components, within an active configuration. Scalability
be improved by simplifying components, by distributing services across many com
nents (decentralizing the interactions), and by controlling interactions and configur
tions as a result of monitoring. Styles influence these factors by determining the loc
of application state, the extent of distribution, and the coupling between componen

Scalability is also impacted by the frequency of interactions, whether the load on a
component will be distributed evenly over time or occur in peaks, whether an intera
requires guaranteed delivery or a best-effort, whether a request involves synchrono
asynchronous handling, and whether the environment is controlled or anarchic (i.e
you trust the other components?).

4.3.3 Simplicity

The primary means by which architectural styles induce simplicity is by applying th
principle of separation of concerns to the allocation of functionality within compone
If functionality can be allocated such that the individual components are substantia
less complex, then they will be easier to understand and implement. Likewise, suc
separation eases the task of reasoning about the overall architecture. I have chose
lump the qualities of complexity, understandability, and verifiability under the gener
property of simplicity, since they go hand-in-hand for a network-based system.

Applying the principle of generality to architectural elements also improves simplic
since it decreases the variability within an architecture. Generality of connectors le
to middleware (Section 6.3).

4.3.4 Modifiability

Modifiability is about the ease with which a change can be made to an application
tecture. Modifiability can be further broken down into evolvability, extensibility,
customizability, configurability, and reusability, as described below. A particular
concern of network-based systems is dynamic modifiability [Oreizy et al., 1998], wh
the modification is made to a deployed application without stopping and restarting
entire system. Even if it were possible to build a software system that perfectly ma
the requirements of its users, those requirements will change over time just as soc
changes over time. Because the components participating in a network-based app
tion may be distributed across multiple organizational boundaries, the system mus
prepared for gradual and fragmented change, where old and new implementations
coexist, without preventing the new implementations from making use of their exten
capabilities.

Evolvability. Evolvability represents the degree to which a component implementat
can be changed without negatively impacting other components. Static evolution o
components generally depends on how well the architectural abstraction is enforce
the implementation, and thus is not something unique to any particular architectura
Software Architectural Styles for Network-based Applications 11

ques

d to
d
mpli-

 one
t
 also
 and

d by

it
-
e pipe-
les

s,
tions.
tion
er-
pes

a-
lity
n
ared
c-

tors

ing

les
ssed,
data
style. Dynamic evolution, however, can be influenced by the style if it includes
constraints on the maintenance and location of application state. The same techni
used to recover from partial failure conditions in a distributed system [Waldo et al.,
1994] can be used to support dynamic evolution.

Extensibility. Extensibility is defined as the ability to add functionality to a system
[Pountain et al., 1995]. Dynamic extensibility implies that functionality can be adde
a deployed system without impacting the rest of the system. Extensibility is induce
within an architectural style by reducing the coupling between components, as exe
fied by event-based integration (Section 5.5).

Customizability. Customizability is a specialization of extensibility in that it refers to
modifying a component at run-time, specifically so that the component can then
perform an unusual service. A component is customizable if it can be extended by
client of that component’s services without adversely impacting other clients of tha
component [Fuggetta et al., 1998]. Styles that support dynamic customization may
improve simplicity and scalability, since service components can be reduced in size
complexity by directly implementing only the most frequent services and allowing
infrequent services to be defined by the client. Customizability is a property induce
the remote evaluation (Section 5.3.2) and code-on-demand (Section 5.3.3) styles.

Configurability. Configurability is related to both extensibility and reusability in that
refers to post-deployment modification of components, or configurations of compo
nents, such that they are capable of using a new service or data element type. Th
and-filter (Section 5.1) and code-on-demand (Section 5.3.3) styles are two examp
that induce configurability of configurations and components, respectively.

Reusability. Reusability is a property of an application architecture if its component
connectors, or data elements can be reused, without modification, in other applica
The primary mechanisms for inducing reusability within architectural styles is reduc
of coupling (knowledge of identity) between components and constraining the gen
ality of component interfaces. The uniform pipe-and-filter style exemplifies these ty
of constraints.

4.3.5 Visibility

Styles can also influence the visibility of interactions within a network-based applic
tion by restricting interfaces via generality or providing access to monitoring. Visibi
in this case refers to the ability of a component to monitor or mediate the interactio
between two other components. Visibility can enable improved performance via sh
caching of interactions, scalability through layered services, reliability through refle
tive monitoring, and security by allowing the interactions to be inspected by media
(e.g., network firewalls). Mobile code is an example where the lack of visibility may
lead to security concerns.

This usage of visibility differs from that in Ghezzi et al. [1991], where they are referr
to visibility into the development process rather than the product.

4.3.6 Portability

Software is portable if it can run in different environments [Ghezzi et al., 1991]. Sty
that induce portability include those that move code along with the data to be proce
such as the virtual machine and mobile agent styles, and those that constrain the
elements to a set of standardized formats.
12 Software Architectural Styles for Network-based Applications

res-
 reli-

g,

s and
 the

is
one-

trol

yle

nd

r style
e

).
agree
s can
(exten-

ead-

pe-

ny
the

e
ica-
4.3.7 Reliability

Reliability, within the perspective of application architectures, can be viewed as the
degree to which an architecture is susceptible to failure at the system level in the p
ence of partial failures within components, connectors, or data. Styles can improve
ability by avoiding single points of failure, enabling redundancy, allowing monitorin
or reducing the scope of failure to a recoverable action.

5 Architectural Styles for Network-based Applications

5.1 Pipe and Filter (PF)

In a pipe and filter style, each component (filter) reads streams of data on its input
produces streams of data on its outputs, usually while applying a transformation to
input streams and computing incrementally so that output begins before the input
completely consumed [Garlan and Shaw, 1993]. This style is also referred to as a
way data flow network [Andrews, 1991]. The constraint is that a filter must be
completely independent of other filters (zero coupling): it must not share state, con
thread, or identity with the other filters on its upstream and downstream interfaces
[Garlan and Shaw, 1993].

Abowd et al. [1995] provide an extensive formal description of the pipe and filter st
using the Z language. The Khoros software development environment for image
processing [Rasure and Young, 1992] provides a good example of using the pipe a
filter style to build applications.

Garlan and Shaw [1993] describe the advantageous properties of the pipe and filte
as follows. First, PF allows the designer to understand the overall input/output of th
system as a simple composition of the behaviors of the individual filters (simplicity
Second, PF supports reuse: any two filters can be hooked together, provided they
on the data that is being transmitted between them (reusability). Third, PF system
be easily maintained and enhanced: new filters can be added to existing systems
sibility) and old filters can be replaced by improved ones (evolvability). Fourth, they
permit certain kinds of specialized analysis (verifiability), such as throughput and d
lock analysis. Finally, they naturally support concurrent execution (user-perceived
performance).

Disadvantages of the PF style include: propagation delay is added through long pi
lines, batch sequential processing occurs if a filter cannot incrementally process its
inputs, and no interactivity is allowed. A filter cannot interact with its environment
because it cannot know that any particular output stream shares a controller with a
particular input stream. These properties decrease user-perceived performance if
problem being addressed does not fit the pattern of a data flow stream.

One aspect of PF styles that is rarely mentioned is that there is an implied “invisibl
hand” that arranges the configuration of filters in order to establish the overall appl

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

PF ±±±± ++++ ++++ ++++ ++++ ++++

UPF PF −−−− ±±±± ++++++++ ++++ ++++ ++++++++ ++++++++ ++++
Software Architectural Styles for Network-based Applications 13

he
and
id-
re, even

me

racters
he

f the

s for
 for
rmed,
s the
 are

ing
s from
until
 made

er
e
ce

f
tion. A network of filters is typically arranged just prior to each activation, allowing t
application to specify the configuration of filter components based on the task at h
and the nature of the data streams (configurability). This controller function is cons
ered a separate operational phase of the system, and hence a separate architectu
though one cannot exist without the other.

5.1.1 Uniform Pipe and Filter (UPF)

The uniform pipe and filter style adds the constraint that all filters must have the sa
interface. The primary example of this style is found in the Unix operating system,
where filter processes have an interface consisting of one input data stream of cha
(stdin) and two output data streams of characters (stdout and stderr). Restricting t
interface allows independently developed filters to be arranged at will to form new
applications. It also simplifies the task of understanding how a given filter works.

A disadvantage of the uniform interface is that it may reduce network performance i
data needs to be converted to or from its natural format.

5.2 Client-Server (CS)

The client-server style is the most frequently encountered of the architectural style
network-based applications. A server component, offering a set of services, listens
requests upon those services. A client component, desiring that a service be perfo
sends a request to the server via a connector. The server either rejects or perform
request and sends a response back to the client. A variety of client-server systems
surveyed by Sinha [1992] and Umar [1997].

Andrews [1991] describes client-server components as follows: A client is a trigger
process; a server is a reactive process. Clients make requests that trigger reaction
servers. Thus, a client initiates activity at times of its choosing; it often then delays
its request has been serviced. On the other hand, a server waits for requests to be
and then reacts to them. A server is usually a non-terminating process and often
provides service to more than one client.

Separation of concerns is the principle behind the client-server constraints. A prop
separation of functionality should simplify the server component in order to improv
scalability. This simplification usually takes the form of moving all of the user interfa
functionality into the client component. The separation also allows the two types o
components to evolve independently, provided that the interface doesn’t change.

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

CS ++++ ++++ ++++

LS −−−− ++++ ++++ ++++ ++++

LCS CS+LS −−−− ++++++++ ++++ ++++++++ ++++ ++++

CSS CS −−−− ++++++++ ++++ ++++ ++++ ++++

C$SS CSS+$ −−−− ++++ ++++ ++++++++ ++++ ++++ ++++ ++++

LC$SS LCS+C$SS −−−− ±±±± ++++ ++++++++++++ ++++++++ ++++++++ ++++ ++++ ++++ ++++

RS CS ++++ −−−− ++++ ++++ −−−−

RDA CS ++++ −−−− −−−− ++++ −−−−
14 Software Architectural Styles for Network-based Applications

ed
ed for
984]

ayer
h
 is
r.

 from
-

P and
ary
essing

le. A
aking

st its
ner-

ers to

red,

re
s are
ther

raint
server
t take

 the

-
gle

,
llows

on.

ance
ests,
The basic form of client-server does not constrain how application state is partition
between client and server components. It is often referred to by the mechanisms us
the connector implementation, such as remote procedure call [Birrell and Nelson, 1
or message-oriented middleware [Umar, 1997].

5.2.1 Layered System (LS) and Layered-Client-Server (LCS)

A layered system is organized hierarchically, each layer providing services to the l
above it and using services of the layer below it [Garlan and Shaw, 1993]. Althoug
layered system is considered a “pure” style, its use within network-based systems
limited to its combination with the client-server style to provide layered-client-serve

Layered systems reduce coupling across multiple layers by hiding the inner layers
all except the adjacent outer layer, thus improving evolvability and reusability. Exam
ples include the processing of layered communication protocols, such as the TCP/I
OSI protocol stacks [Zimmerman, 1980], and hardware interface libraries. The prim
disadvantage of layered systems is that they add overhead and latency to the proc
of data, reducing user-perceived performance [Clark and Tennenhouse, 1990].

Layered-client-server adds proxy and gateway components to the client-server sty
proxy [Shapiro, 1986] acts as a shared server for one or more client components, t
requests and forwarding them, with possible translation, to server components. A
gateway component appears to be a normal server to clients or proxies that reque
services, but is in fact forwarding those requests, with possible translation, to its “in
layer” servers. These additional mediator components can be added in multiple lay
add features like load balancing and security checking to the system.

Architectures based on layered-client-server are referred to as two-tiered, three-tie
or multi-tiered architectures in the information systems literature [Umar, 1997].

LCS is also a solution to managing identity in a large scale distributed system, whe
complete knowledge of all servers would be prohibitively expensive. Instead, server
organized in layers such that rarely used services are handled by intermediaries ra
than directly by each client [Andrews, 1991].

5.2.2 Client-Stateless-Server (CSS)

The client-stateless-server style derives from client-server with the additional const
of no session state allowed on the server component. Each request from client to
must contain all of the information necessary to understand the request, and canno
advantage of any stored context on the server. Application state is kept entirely on
client.

These constraints improve the properties of visibility, reliability, and scalability. Visi
bility is improved because a monitoring system does not have to look beyond a sin
request datum in order to determine the full nature of the request. Reliability is
improved because it eases the task of recovering from partial failures [Waldo et al.
1994]. Scalability is improved because not having to store state between requests a
the server component to quickly free resources and further simplifies implementati

The disadvantage of client-stateless-server is that it may decrease network perform
by increasing the repetitive data (per-interaction overhead) sent in a series of requ
since that data cannot be left on the server in a shared context.
Software Architectural Styles for Network-based Applications 15

 cache
client
hable,

erver.
S

ally or
rfor-

rver
po-

name

CS
e,

.

ervices
rver.
neric

in the
 when

lability
ns,

s the
 a stan-
nd
ake

 piece
cture-

ced on

hat
erver

k-
5.2.3 Client-Cache-Stateless-Server (C$SS)

The client-cache-stateless-server style derives from the client-stateless-server and
styles via the addition of cache components. A cache acts as a mediator between
and server in which the responses to prior requests can, if they are considered cac
be reused in response to later requests that are equivalent and likely to result in a
response identical to that in the cache if the request were to be forwarded to the s
An example system that makes effective use of this style is Sun Microsystems’ NF
[Sandberg et al., 1985].

The advantage of adding cache components is that they have the potential to parti
completely eliminate some interactions, improving efficiency and user-perceived pe
mance.

5.2.4 Layered-Client-Cache-Stateless-Server (LC$SS)

The layered-client-cache-stateless-server style derives from both layered-client-se
and client-cache-stateless-server through the addition of proxy and/or gateway com
nents. Two examples of systems that use an LC$SS style are the Internet domain
system (DNS) and the World Wide Web’s HTTP [Fielding et al., 1999].

The advantages and disadvantages of LC$SS are just a combination of those for L
and C$SS. However, note that we don’t count the contributions of the CS style twic
since the benefits are not additive if they come from the same ancestral derivation

5.2.5 Remote Session (RS)

The remote session style is a variant of client-server that attempts to minimize the
complexity, or maximize the reuse, of the client components rather than the server
component. Each client initiates a session on server and then invokes a series of s
on the server, finally exiting the session. Application state is kept entirely on the se
This style is typically used when it is desired to access a remote service using a ge
client (e.g., TELNET) or via an interface that mimics a generic client (e.g., FTP).

The advantages of the remote session style are that it is easier to centrally mainta
interface at the server, reducing concerns about inconsistencies in deployed clients
functionality is extended, and improves efficiency if the interactions make use of
extended session context on the server. The disadvantages are that it reduces sca
of the server, due to the stored application state, and reduces visibility of interactio
since a monitor would have to know the complete state of the server.

5.2.6 Remote Data Access (RDA)

The remote data access style [Umar, 1997] is a variant of client-server that spread
application state across both client and server. A client sends a database query in
dard format, such as SQL, to a remote server. The server allocates a workspace a
performs the query, which may result in a very large data set. The client can then m
further operations upon the result set (such as table joins) or retrieve the result one
at a time. The client must know about the data structure of the service to build stru
dependent queries.

The advantage of remote data access is that a large data set can be iteratively redu
the server side without transmitting it across the network, improving efficiency, and
visibility is improved by using a standard query language. The disadvantages are t
the client needs to understand the same database manipulation concepts as the s
implementation (lacking simplicity) and storing application context on the server
decreases scalability. Reliability also suffers, since partial failure can leave the wor
16 Software Architectural Styles for Network-based Applications

n be
tion

en
rehen-
hi-

el. In
idered

mity

 a data
ity is
ral

ter,
rably

tyle,
rver

ral
ary
 plat-

d
ted in
space in an unknown state. Transaction mechanisms (e.g., two-phase commit) ca
used to fix the reliability problem, though at a cost of added complexity and interac
overhead.

5.3 Mobile Code

Mobile code styles use mobility in order to dynamically change the distance betwe
the processing and source of data or destination of results. These styles are comp
sively examined in Fuggetta et al. [1998]. A site abstraction is introduced at the arc
tectural level, as part of the active configuration, in order to take into account the
location of the different components. Introducing the concept of location makes it
possible to model the cost of an interaction between components at the design lev
particular, an interaction between components that share the same location is cons
to have negligible cost when compared to an interaction involving communication
through the network. By changing its location, a component may improve the proxi
and quality of its interaction, reducing interaction costs and thereby improving effi-
ciency and user-perceived performance.

In all of the mobile code styles, a data element is dynamically transformed into a
component. Fuggetta et al. [1998] use an analysis that compares the code’s size as
element to the savings in normal data transfer in order to determine whether mobil
desirable for a given action. This would be impossible to model from an architectu
standpoint if the definition of software architecture excludes data elements.

5.3.1 Virtual Machine (VM)

Underlying all of the mobile code styles is the notion of a virtual machine, or interpre
style [Garlan and Shaw, 1993]. The code must be executed in some fashion, prefe
within a controlled environment to satisfy security and reliability concerns, which is
exactly what the virtual machine style provides. It is not, in itself, a network-based s
but it is commonly used as such when combined with a component in the client-se
style (REV and COD styles).

Scripting languages are the most common use of virtual machines, including gene
purpose languages like Perl and task-specific languages like PostScript. The prim
benefits are the separation between instruction and implementation on a particular
form (portability) and ease of extensibility. Visibility is reduced because it is hard to
know what an executable will do simply by looking at the code. Simplicity is reduce
due to the need to manage the evaluation environment, but that may be compensa
some cases as a result of simplifying the static functionality.

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

VM ±±±± ++++ −−−− ++++

REV CS+VM ++++ −−−− ±±±± ++++ ++++ −−−− ++++ −−−−

COD CS+VM ++++ ++++ ++++ ±±±± ++++ ++++ −−−−

LCODC$SS LC$SS+COD −−−− ++++++++ ++++++++ ++++4444++++ +±+±+±+±++++ ++++++++ ++++ ++++ ++++ ±±±± ++++ ++++

MA REV+COD ++++ ++++++++ ±±±± ++++++++ ++++ ++++ −−−− ++++
Software Architectural Styles for Network-based Applications 17

r and
 a
ppen

erver
 avail-

e eval-
ment,
being

mpo-

erver
y is
mpen-
ility
viron-
t the
ty.

ploy-

s to a
t to a
ecutes

ed
-
lient’s
ns.

hat
ction-
t

ignifi-
ple
st

n of
e.
 with
ee,
.

 for
ther
5.3.2 Remote Evaluation (REV)

In the remote evaluation style [Fuggetta et al., 1998], derived from the client-serve
virtual machine styles, a client component has the know-how necessary to perform
service, but lacks the resources (CPU cycles, data source, etc.) required, which ha
to be located at a remote site. Consequently, the client sends the know-how to a s
component at the remote site, which in turn executes the code using the resources
able there. The results of that execution are then sent back to the client. The remot
uation style assumes that the provided code will be executed in a sheltered environ
such that it won’t impact other clients of the same server aside from the resources
used.

The advantages of remote evaluation include the ability to customize the server co
nent’s services, which provides for improved extensibility and customizability, and
better efficiency when the code can adapt its actions to the environment inside the s
(as opposed to the client making a series of interactions to do the same). Simplicit
reduced due to the need to manage the evaluation environment, but that may be co
sated in some cases as a result of simplifying the static server functionality. Scalab
is reduced; this can be improved with the server’s management of the execution en
ment (killing long-running or resource-intensive code when resources are tight), bu
management function itself leads to difficulties regarding partial failure and reliabili
The most significant limitation, however, is the lack of visibility due to the client
sending code instead of standardized queries. Lack of visibility leads to obvious de
ment problems if the server cannot trust the clients.

5.3.3 Code on Demand (COD)

In the code-on-demand style [Fuggetta et al., 1998], a client component has acces
set of resources, but not the know-how on how to process them. It sends a reques
remote server for the code representing that know-how, receives that code, and ex
it locally.

The advantages of code-on-demand include the ability to add features to a deploy
client, which provides for improved extensibility and configurability, and better user
perceived performance and efficiency when the code can adapt its actions to the c
environment and interact with the user locally rather than through remote interactio
Simplicity is reduced due to the need to manage the evaluation environment, but t
may be compensated in some cases as a result of simplifying the client’s static fun
ality. Scalability of the server is improved, since it can off-load work to the client tha
would otherwise have consumed its resources. Like remote evaluation, the most s
cant limitation is the lack of visibility due to the server sending code instead of sim
data. Lack of visibility leads to obvious deployment problems if the client cannot tru
the servers.

5.3.4 Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODC$SS)

As an example of how some architectures are complementary, consider the additio
code-on-demand to the layered-client-cache-stateless-server style discussed abov
Since the code can be treated as just another data element, this does not interfere
the advantages of the LC$SS style. An example is the World Wide Web [Berners-L
1996], where applets and protocol extensions can be downloaded as typed media

The advantages and disadvantages of LCODC$SS are just a combination of those
COD and LC$SS. We could go further and discuss the combination of COD with o
CS styles, but this survey is not intended to be exhaustive (nor exhausting).
18 Software Architectural Styles for Network-based Applications

nt is
data
lua-

 for
 the
hen

 at a

essi-
he
at
 and

the
ary

ce

tency

lt of
lica-
city of
the
et-

lity of
 also

rms

and,
rage,
5.3.5 Mobile Agent (MA)

In the mobile agent style [Fuggetta et al., 1998], an entire computational compone
moved to a remote site, along with its state, the code it needs, and possibly some
required to perform the task. This can be considered a derivation of the remote eva
tion and code-on-demand styles, since the mobility works both ways.

The primary advantage of the mobile agent style, beyond those already described
REV and COD, is that there is greater dynamism in the selection of when to move
code. An application can be in the midst of processing information at one location w
it decides to move to another location, presumably in order to reduce the distance
between it and the next set of data it wishes to process. In addition, the reliability
problem of partial failure is reduced because the application state is in one location
time [Fuggetta et al., 1998].

5.4 Replication

5.4.1 Replicated Repository (RR)

Systems based on the replicated repository style [Andrews, 1991] improve the acc
bility of data and scalability of services by having more than one process provide t
same service. These decentralized servers interact to provide clients the illusion th
there is just one, centralized service. Distributed filesystems, such as XMS [Fridrich
Older, 1985], and remote versioning systems, like CVS [www.cyclic.com], are the
primary examples.

Improved user-perceived performance is the primary advantage, both by reducing
latency of normal requests and enabling disconnected operation in the face of prim
server failure or intentional roaming off the network. Simplicity remains neutral, sin
the complexity of replication is offset by the savings of allowing network-unaware
components to operate transparently on locally replicated data. Maintaining consis
is the primary concern.

5.4.2 Cache ($)

A variant of replicated repository is found in the cache style: replication of the resu
an individual request such that it may be reused by later requests. This form of rep
tion is most often found in cases where the potential data set far exceeds the capa
any one client, as in the WWW [Berners-Lee, 1996], or where complete access to
repository is unnecessary. Lazy replication occurs if data is replicated upon a not-y
cached response for a request, thus relying on locality of reference and commona
interest to propagate useful items into the cache for later reuse. Active replication is
possible, via pre-fetching of cachable entries based on anticipated requests.

Caching provides slightly less improvement than the replicated repository style in te
of user-perceived performance, since more requests will miss the cache and only
recently accessed data will be available for disconnected operation. On the other h
caching is much easier to implement, doesn’t require as much processing and sto

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

RR ++++++++ ++++ ++++

$ RR ++++ ++++ ++++ ++++
Software Architectural Styles for Network-based Applications 19

che
yle.

stem
 the
can
egister
vokes
odel-
tion
90],

the
eneral
ts to
,

that
invo-
a-
rove

isten
 with
t as a
ca-
nd

re not
 is no

ilding
e-

e
le,
and is more efficient because data is transmitted only when it is requested. The ca
style becomes network-based when it is combined with a client-stateless-server st

5.5 Event-based Integration (EBI)

The event-based integration style, also known as the implicit invocation or event sy
style, reduces coupling between components by removing the need for identity on
connector interface. Instead of invoking another component directly, a component
announce (or broadcast) one or more events. Other components in a system can r
interest in that type of event and, when the event is announced, the system itself in
all of the registered components [Garlan and Shaw, 1993]. Examples include the M
View-Controller paradigm in Smalltalk-80 [Krasner and Pope, 1988] and the integra
mechanisms of many software engineering environments, including Field [Reiss, 19
SoftBench [Cagan, 1990], and Polylith [Purtilo, 1994].

The event-based integration style provides strong support for extensibility through
ease of adding new components that listen for events, for reuse by encouraging a g
event interface and integration mechanism, and for evolution by allowing componen
be replaced without affecting the interfaces of other components [Garlan and Shaw
1993]. However, like pipe-and-filter systems, there needs to be an “invisible hand”
places components on the event interface. Most EBI systems also include explicit
cation as a complementary form of interaction [Garlan and Shaw, 1993]. For applic
tions that are dominated by data monitoring, rather than data retrieval, EBI can imp
efficiency by removing the need for polling interactions.

The basic form of EBI system consists of one event bus to which all components l
for events of interest to them. Of course, this immediately leads to scalability issues
regard to the number of notifications, event storms as other components broadcas
result of events caused by that notification, and a single point of failure in the notifi
tion delivery system. This can be ameliorated though the use of layered systems a
filtering of events, at the cost of simplicity.

Other disadvantages of EBI systems are that it can be hard to anticipate what will
happen in response to an action (poor understandability) and event notifications a
suitable for exchanging large granularity data [Garlan and Shaw, 1993]. Also, there
support for recovery from partial failure.

Sullivan and Notkin [1992] provide a survey of implicit invocation research and
describe its application to improving the evolution quality of software tool suites.
Barrett et al. [1996] present a survey of event-based integration mechanisms by bu
a framework for comparison and then seeing how some systems fit within that fram
work. Rosenblum and Wolf [1997] investigate a design framework for Internet-scal
event notification. All are concerned with the scope and requirements of an EBI sty
rather than providing solutions for network-based systems.

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

EBI ++++ ++++ − − − − −−−− ±±±± ++++ ++++ ++++ ++++ −−−− −−−−

C2 EBI+LCS ++++ ++++ ++++ ++++++++ ++++ ++++ ++++++++ ±±±± ++++ ±±±±

DO CS+CS −−−− ++++ ++++ ++++ ++++ −−−− −−−−

BDO DO+LCS −−−− −−−− ++++++++ ++++ ++++ ++++++++ −−−− ++++
20 Software Architectural Styles for Network-based Applications

euse
ce. It
nous
, are
f
 with

m

ot say
plete

ering.
l-

e

g as
ata, a
thread
on,
er
oca-
ed

ade

tions
is

ely to
 of

er
jects
ject
ation
ment,
991].

ce, data
r
5.6 Other Hybrid Styles

5.6.1 C2

The C2 architectural style [Taylor et al., 1996] is directed at supporting large grain r
and flexible composition of system components by enforcing substrate independen
does so by combining event-based integration with layered-client-server. Asynchro
notification messages going down, and asynchronous request messages going up
the sole means of intercomponent communication. This enforces loose coupling o
dependency on higher layers (service requests may be ignored) and zero coupling
lower levels (no knowledge of notification usage), improving control over the syste
without losing most of the advantages of EBI.

Notifications are announcements of a state change within a component. C2 does n
what should be included with a notification: a flag, a delta of state change, or a com
state representation are all possibilities. A connector’s primary responsibility is the
routing and broadcasting of messages; its secondary responsibility is message filt
The introduction of layered filtering of messages solves the EBI problems with sca
ability, while improving evolvability and reusability as well. Heavyweight connectors
that include monitoring capabilities can be used to improve visibility and reduce th
reliability problems of partial failure.

5.6.2 Distributed Objects

The distributed objects style organizes a system as a set of components interactin
peers. An object is an entity that encapsulates some private state information or d
set of associated operations or procedures that manipulate the data, and possibly
of control so that collectively they can be considered a single unit [Chin and Chans
1991]. In general, an object’s state is completely hidden and protected from all oth
objects. The only way it can be examined or modified is by making a request or inv
tion on one of the object’s publicly accessible operations. This creates a well-defin
interface for each object, enabling the specification of an object’s operations to be m
public while at the same time keeping the implementation of its operations and the
representation of its state information private, which in turn improves evolvability.

An operation may invoke other operations, possibly on other objects. These opera
may in turn make invocations on others, and so on. A chain of related invocations
referred to as an action [Chin and Chanson, 1991]. State is distributed among the
objects. This can be advantageous in terms of keeping the state where it is most lik
be up-to-date, but has the disadvantage in that it is difficult to obtain an overall view
system activity (poor visibility).

In order for one object to interact with another, it must know the identity of that oth
object. When the identity of an object changes, it is necessary to modify all other ob
that explicitly invoke it [Garlan and Shaw, 1993]. There must be some controller ob
that is responsible for maintaining the system state in order to complete the applic
requirements. Central issues for distributed object systems include: object manage
object interaction management, and resource management [Chin and Chanson, 1

Object systems are designed to isolate the data being processed. As a consequen
streaming is not supported in general. However, this does provide better support fo
object mobility when combined with the mobile agent style.
Software Architectural Styles for Network-based Applications 21

 use
ased
rib-
er
t that

vel

ards
vel-

 appli-
are
rn.

are
ctural
nts for
and

ssifi-

aw
nts
ifica-
y the
ed in
; how
t type
ears
n. It

valu-
t the
t

 style
s with
ela-
chi-
s can

tterns
5.6.3 Brokered Distributed Objects

In order to reduce the impact of identity, modern distributed object systems typically
one or more intermediary styles to facilitate communication. This includes event-b
integration and brokered client/server [Buschmann et al., 1996]. The brokered dist
uted object style introduces name resolver components whose purpose is to answ
client object requests for general service names with the specific name of an objec
will satisfy the request. Although improving reusability and evolvability, the extra le
of indirection requires additional network interactions, reducing efficiency.

Brokered distributed object systems are currently dominated by the industrial stand
development of CORBA within the OMG [1997] and the international standards de
opment of Open Distributed Processing (ODP) within ISO/IEC [1995].

In spite of all the interest associated with distributed objects, they fare poorly when
compared to most other network-based architectural styles. They are best used for
cations that involve the remote invocation of encapsulated services, such as hardw
devices, where the efficiency and frequency of network interactions is less a conce

6 Related Work

I include here only those areas of research that describe, define, or embody softw
architectural styles. Other areas for software architectural research include archite
analysis techniques, architecture recovery and reengineering, tools and environme
architectural design, architecture refinement from specification to implementation,
case studies of deployed software architectures [Garlan and Perry, 1995].

6.1 Classification of Architectural Styles and Patterns

The area of research most directly related to this survey is the identification and cla
cation of architectural styles and architecture-level patterns.

Shaw [1990] describes a few architectural styles, later expanded in Garlan and Sh
[1993]. A preliminary classification of these styles is presented in Shaw and Cleme
[1997] and repeated in Bass et al. [1998], in which a two-dimensional, tabular class
tion strategy is used with control and data issues as the primary axes, organized b
following categories of features: which kinds of components and connectors are us
the style; how control is shared, allocated, and transferred among the components
data is communicated through the system; how data and control interact; and, wha
of reasoning is compatible with the style. The primary purpose of the taxonomy app
to be simply to identify style characteristics, rather than to assist in their compariso
concludes with a small set of “rules of thumb” as a form of design guidance

Unlike this survey, the Shaw and Clements [1997] classification does not assist in e
ating designs in a way that is useful to an application designer. The problem is tha
purpose of building software is not to build a specific shape, topology or componen
type, so organizing the classification in that fashion does not help a designer find a
that corresponds to their needs. It also mixes the essential differences among style
other issues which have only incidental significance, and obscures the derivation r
tionships among styles. Furthermore, it does not focus on any particular type of ar
tecture, such as network-based applications. Finally, it does not describe how style
be combined, nor the effect of their combination.

Buschmann and Meunier [1995] describe a classification scheme that organizes pa
according to granularity of abstraction, functionality, and structural principles. The
22 Software Architectural Styles for Network-based Applications

me-
n
s and

nd

s,
t al.

 the
n

age
s in a
mu-

soft-

r, the

 task,

ode
bile
e-

stan-

stry-

f inte-

the
al
e use

helf
 the

 into

struc-
granularity of abstraction separates patterns into three categories: architectural fra
works (templates for architectures), design patterns, and idioms. Their classificatio
addresses some of the same issues as this survey, such as separation of concern
structural principles that lead to architectural properties, but only covers two of the
architectural styles described here. Their classification is considerably expanded in
Buschmann et al. [1996] with more extensive discussion of architectural patterns a
their relation to software architecture.

Zimmer [1995] organizes design patterns using a graph based on their relationship
making it easier to understand the overall structure of the patterns in the Gamma e
[1995] catalog. However, the patterns classified are not architectural patterns, and
classification is based exclusively on derivation or uses relationships rather than o
architectural properties.

6.2 Distributed Systems and Programming Paradigms

Andrews [1991] surveys how processes in a distributed program interact via mess
passing. He defines concurrent programs, distributed programs, kinds of processe
distributed program (filters, clients, servers, peers), interaction paradigms, and com
nication channels. Interaction paradigms represent the communication aspects of
ware architectural styles. He describes paradigms for one-way data flow through
networks of filters (pipe-and-filter), client-server, heartbeat, probe/echo, broadcast,
token passing, replicated servers, and replicated workers with bag of tasks. Howeve
presentation is from the perspective of multiple processes cooperating on a single
rather than general network-based architectural styles.

Fuggetta et al. [1998] provide a thorough examination and classification of mobile c
paradigms. This survey builds upon their work to the extent that I compare the mo
code styles with other network-capable styles, and place them within a single fram
work and set of architectural definitions.

6.3 Middleware

Bernstein [1996] defines middleware as a distributed system service that includes
dard programming interfaces and protocols. These services are called middleware
because they act as a layer above the OS and networking software and below indu
specific applications. Umar [1997] presents an extensive treatment of the subject.

Architecture research regarding middleware focuses on the problems and effects o
grating components with off-the-shelf middleware. Di Nitto and Rosenblum [1999]
describe how the usage of middleware and predefined components can influence
architecture of a system being developed and, conversely, how specific architectur
choices can constrain the selection of middleware. Dashofy et al. [1999] discuss th
of middleware with the C2 style.

Garlan et al. [1995] point out some of the architectural assumptions within off-the-s
components, examining the authors’ problems with reusing subsystems in creating
Aesop tool for architectural design [Garlan et al., 1994]. They classify the problems
four main categories of assumptions that can contribute to architectural mismatch:
nature of components, nature of connectors, global architectural structure, and con
tion process.
Software Architectural Styles for Network-based Applications 23

e
-
ign
 the

 on
ns

struc-
es are
 of

olo-
ture
 does
olo-
t

eads
trol
cture.

nd
citing
994]

ety
g a

archi-

s are
e
 than

frame-
s
or
lica-
6.4 Handbooks for Design, Design Patterns, and Pattern Languages

Shaw [1990] advocates the development of architectural handbooks along the sam
lines as traditional engineering disciplines. As discussed in Section 2.3, the object
oriented programming community has taken the lead in producing catalogs of des
patterns, as exemplified by the books on design patterns [Gamma et al., 1995] and
essays edited by Coplien and Schmidt [1995].

Patterns tend to be more problem-oriented than architectural styles. Shaw [1996]
presents more detail on eight example architectural patterns, including information
the kinds of problems best suited to each architecture, but doesn’t draw compariso
between the architectural patterns.

Tepfenhart and Cusick [1997] use a two dimensional map to differentiate among
domain taxonomies, domain models, architectural styles, frameworks, kits, design
patterns, and applications. In the topology, design patterns are predefined design
tures used as building blocks for a software architecture, whereas architectural styl
sets of operational characteristics that identify an architectural family independent
application domain. However, they fail to define architecture itself.

6.5 Design Methodologies

Most early research on software architecture was concentrated on design method
gies. For example, object-oriented design [Booch, 1986] advocates a way to struc
problems that leads naturally to an object-based architecture (or, more accurately,
not lead naturally to any other form of architecture). One of the first design method
gies to emphasize design at the architectural level is Jackson System Developmen
[Cameron, 1986]. JSD intentionally structures the analysis of a problem so that it l
to a style of architecture that combines pipe-and-filter (data flow) and process con
constraints. These design methodologies tend to produce only one style of archite

There has been some initial work at investigating methodologies for the analysis a
development of architectures. Kazman et al. have described design methods for eli
the architectural aspects of a design through scenario-based analysis with SAAM [1
and architectural trade-off analysis via ATAM [1999]. Shaw [1995] compares a vari
of box-and-arrow designs for an automobile cruise control system, each done usin
different design methodology and encompassing several architectural styles.

6.6 Reference Models and Domain-specific Software Architectures (DSSA)

Reference models are developed to provide conceptual frameworks for describing
tectures and showing how components are related to each other [Shaw, 1990].

The Object Management Architecture (OMA), developed by the OMG [1995] as a
reference model for brokered distributed object architectures, specifies how object
defined and created, how client applications invoke objects, and how objects can b
shared and reused. The emphasis is on management of distributed objects, rather
efficient application interaction.

Hayes-Roth et al. [1995] define domain-specific software architecture (DSSA) as
comprising: a) a reference architecture, which describes a general computational
work for a significant domain of applications, b) a component library, which contain
reusable chunks of domain expertise, and c) an application configuration method f
selecting and configuring components within the architecture to meet particular app
tion requirements. Tracz [1995] provides a general overview of DSSA.
24 Software Architectural Styles for Network-based Applications

ing
tyle

e

f

n for
 inter-
lows
res

 archi-
and
itec-
r

99].

s
with

s of
x-
 in
rties of

o
d by
y
i-

el, it
ose

e
or
 the

m for
DSSA projects have been successful at transferring architectural decisions to runn
systems by restricting the software development space to a specific architectural s
that matches the domain requirements [Medvidovic et al., 1999]. Examples include
ADAGE [Batory et al., 1995] for avionics, AIS [Hayes-Roth et al., 1995] for adaptiv
intelligent systems, and MetaH [Vestal, 1996] for missile guidance, navigation, and
control systems.

6.7 Architecture Description Languages (ADL)

Most of the recent published work regarding software architectures is in the area o
architecture description languages (ADL). An ADL is, according to Medvidovic and
Taylor [1997], a language that provides features for the explicit specification and
modeling of a software system’s conceptual architecture, including at a minimum:
components, component interfaces, connectors, and architectural configurations.

Darwin is a declarative language which is intended to be a general purpose notatio
specifying the structure of systems composed of diverse components using diverse
action mechanisms [Magee et al., 1995]. Darwin’s interesting qualities are that it al
the specification of distributed architectures and dynamically composed architectu
[Magee and Kramer, 1996].

UniCon [Shaw et al., 1995] is a language and associated toolset for composing an
tecture from a restricted set of component and connector examples. Wright [Allen
Garlan, 1997] provides a formal basis for specifying the interactions between arch
tural components by specifying connector types by their interaction protocols. Othe
examples include ACME [Garlan et al., 1997] and C2SADEL [Medvidovic et al., 19

Like design methodologies, ADLs often introduce specific architectural assumption
that may impact their ability to describe some architectural styles, and may conflict
the assumptions in existing middleware [Di Nitto and Rosenblum, 1999].

6.8 Formal Architectural Models

Abowd et al. [1995] claim that architectural styles can be described formally in term
a small set of mappings from the syntactic domain of architectural descriptions (bo
and-line diagrams) to the semantic domain of architectural meaning. As described
Section 2.2, this assumes that architectures are descriptions rather than the prope
a running system.

Inverardi and Wolf [1995] use the Chemical Abstract Machine (CHAM) formalism t
model software architecture elements as chemicals whose reactions are controlle
explicitly stated rules. It specifies the behavior of components according to how the
transform available data elements and uses composition rules to propagate the ind
vidual transformations into an overall system result.While this is an interesting mod
is unclear as to how CHAM could be used to describe any form of architecture wh
purpose goes beyond transforming a data stream.

Rapide [Luckham and Vera, 1995] is a concurrent, event-based simulation languag
specifically designed for defining and simulating system architectures. The simulat
produces a partially-ordered set of events that can be analyzed for conformance to
architectural constraints on interconnection. Le Métayer [1998] presents a formalis
the definition of architectures in terms of graphs and graph grammars.
Software Architectural Styles for Network-based Applications 25

.
e

bility

et of
chi-
classi-

alua-
on,
sons
tion.

e

le.
infor-

mote
.

 it is
ility
ric of

also
ecific
 that

rther

7 Conclusions

Each architectural style promotes a certain type of interaction among components
When components are distributed across a wide-area network, use or misuse of th
network drives application usability. By characterizing styles by their influence on
architectural properties, and particularly on application performance, we gain the a
to better choose a software design that is appropriate for the application.

The primary contributions of this survey are the development of a comprehensive s
definitions for software architecture and architectural styles, identification of the ar
tectural properties that are most influenced by the constraints of each style, and a
fication of styles according to those properties.

There are, however, a couple limitations with the chosen classification. First, the ev
tion of all network-based styles against the generic notion of network communicati
rather than a specific type of communication, leads to difficulty in accurate compari
between styles that have different properties depending on the type of communica
For example, many of the good qualities of the pipe-and-filter style disappear if the
communication is fine-grained control messages, and are not applicable at all if th
communication requires user interactivity. Likewise, layered caching only adds to
latency, without any benefit, if none of the responses to client requests are cachab
This type of distinction does not appear in the classification, and is only addressed
mally in the discussion of each style. I believe this limitation can be overcome by
creating separate classification tables for each type of communication problem.
Example problem areas would include, among others, large grain data retrieval, re
information monitoring, search, remote control systems, and distributed processing

A second limitation is with the grouping of architectural properties. In some cases,
better to identify the specific aspects of, for example, understandability and verifiab
induced by an architectural style, rather than lumping them together under the rub
simplicity. This is particularly the case for styles which might improve verifiability at
the expense of understandability. However, the more abstract notion of a property
has value as a single metric, since we do not want to make the classification so sp
that no two styles impact the same category. One solution would be a classification
presented both the specific properties and a summary property.

Regardless, this initial survey and classification is a necessary prerequisite to any fu
classifications that might address its limitations.

8 Acknowledgments

I’d like to thank Nenad Medvidovic for providing me with a copy of some hard-to-
obtain papers and pointing me in the direction of others. Peyman Oreizy’s survey
[Oreizy, 1998] provided a useful outline for structuring this survey. This version has
benefited from the comments on earlier drafts by Richard N. Taylor.
26 Software Architectural Styles for Network-based Applications

s of
gy,
der-

OFT
les,

tions

rna-
Also
M
(8),

ngel.

oft-
(4),

n

e
95.

er

I):

1996,

tions

5, pp.

ring,

 (eds.),

nted
6.

ion of
9 References

[Abowd et al., 1995] G. D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand description
software architecture. ACM Transactions on Software Engineering and Methodolo
4(4), Oct. 1995, pp. 319-364. A shorter version also appeared as: Using style to un
stand descriptions of software architecture. In Proceedings of the First ACM SIGS
Symposium on the Foundations of Software Engineering (SIGSOFT‘93), Los Ange
CA, Dec. 1993, pp. 9-20.

[Allen and Garlan, 1997] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transac
on Software Engineering and Methodology, 6(3), July 1997. A shorter version also
appeared as: Formalizing architectural connection. In Proceedings of the 16th Inte
tional Conference on Software Engineering, Sorrento, Italy, May 1994, pp. 71-80.
as: Beyond Definition/Use: Architectural Interconnection. In Proceedings of the AC
Interface Definition Language Workshop, Portland, Oregon, SIGPLAN Notices, 29
Aug. 1994.

[Alexander et al., 1977] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. A
A Pattern Language. Oxford University Press, New York, 1977.

[Andrews, 1991] G. Andrews. Paradigms for process interaction in distributed programs. ACM
Computing Surveys, 23(1), Mar. 1991, pp. 49-90.

[Barrett et al., 1996] D. J. Barrett, L. A. Clarke, P. L. Tarr, A. E. Wise. A Framework for Event-Based S
ware Integration. ACM Transactions on Software Engineering and Methodology, 5
Oct. 1996, pp. 378-421.

[Bass et al., 1998] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addiso
Wesley, Reading, Mass., 1998.

[Batory et al., 1995] D. Batory, L. Coglianese, S. Shafer, and W. Tracz. The ADAGE avionics referenc
architecture. In Proceedings of AIAA Computing in Aerospace 10, San Antonio, 19

[Berners-Lee, 1996] T. Berners-Lee. WWW: Past, present, and future. IEEE Computer, 29(10), Octob
1996, pp. 69-77.

[Berners-Lee et al., 1998] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform Resource Identifiers (UR
Generic Syntax. Internet RFC 2396, Aug. 1998.

[Bernstein, 1996] P. Bernstein. Middleware: A model for distributed systems services. CACM, Feb.
pp. 86-98.

[Birrell and Nelson, 1984] A. D. Birrell and B. J. Nelson. Implementing remote procedure call. ACM Transac
on Computer Systems, 2, Jan. 1984, pp. 39-59.

[Boasson, 1995] M. Boasson. The artistry of software architecture. IEEE Software, 12(6), Nov. 199
13-16.

[Booch, 1986] G. Booch. Object-oriented development. IEEE Transactions on Software Enginee
12(2), Feb. 1986, pp. 211-221.

[Buschmann and Meunier, 1995] F. Buschmann and R. Meunier. A system of patterns. Coplien and Schmidt
Pattern Languages of Program Design, Addison-Wesley, 1995, pp. 325-343.

[Buschmann et al., 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-orie
Software Architecture: A system of patterns. John Wiley & Sons Ltd., England, 199

[Cagan, 1990] M. R. Cagan. The HP SoftBench Environment: An architecture for a new qenerat
software tools. Hewlett-Packard Journal, 41(3), June 1990, pp. 36-47.
Software Architectural Styles for Network-based Applications 27

,

ACM

nera-

ddison-

1),

le-
Inter-
 3-12.

he-
.

nfer-

e

m.

sac-

f Reus-

 envi-
re

rtola

nvi-
da-
8.

ture.

 to
ence
tch:
[Cameron, 1986] J. R. Cameron. An overview of JSD. IEEE Transactions on Software Engineering
12(2), Feb. 1986, 222-240.

[Chin and Chanson, 1991] R. S. Chin and S. T. Chanson. Distributed object-based programming systems.
Computing Surveys, 23(1), Mar. 1991, pp. 91-124.

[Clark and Tennenhouse, 1990] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new ge
tion of protocols. In Proceedings of ACM SIGCOMM‘90 Symposium, Philadelphia,
PA, Sep. 1990, pp. 200-208.

[Coplien and Schmidt, 1995] J. O. Coplien and D. C. Schmidt, ed. Pattern Languages of Program Design. A
Wesley, Reading, Mass., 1995.

[Coplien, 1997] J. O. Coplien. Idioms and Patterns as Architectural Literature. IEEE Software, 14(
Jan. 1997, pp. 36-42.

[Dashofy et al., 1999] E. M. Dashofy, N. Medvidovic, R. N. Taylor. Using off-the-shelf middleware to imp
ment connectors in distributed software architectures. In Proceedings of the 1999
national Conference on Software Engineering, Los Angeles, May 16-22, 1999, pp.

[DeRemer and Kron, 1976] F. DeRemer and H. H. Kron. Programming-in-the-large versus programming-in-t
small. IEEE Transactions on Software Engineering, SE-2(2), June 1976, pp. 80-86

[Di Nitto and Rosenblum, 1999] E. Di Nitto and D. Rosenblum. Exploiting ADLs to specify architectural styles
induced by middleware infrastructures. In Proceedings of the 1999 International Co
ence on Software Engineering, Los Angeles, May 16-22, 1999, pp. 13-22.

[Fielding et al., 1999] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. Internet RFC 2616, Jun
1999. [Obsoletes RFC 2068, Jan. 1997.]

[Fridrich and Older, 1985] M. Fridrich and W. Older. Helix: The architecture of the XMS distributed file syste
IEEE Software, 2, May 1985, pp. 21-29.

[Fuggetta et al., 1998] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility. IEEE Tran
tions on Software Engineering, 24(5), May 1998, pp. 342-361.

[Gamma et al, 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements o
able Object-oriented Software. Addison-Wesley, Reading, Mass., 1995.

[Garlan and Ilias, 1990] D. Garlan and E. Ilias. Low-cost, adaptable tool integration policies for integrated
ronments. In Proceedings of the ACM SIGSOFT ‘90: Fourth Symposium on Softwa
Development Environments, Dec. 1990, pp. 1-10.

[Garlan and Shaw, 1993] D. Garlan and M. Shaw. An introduction to software architecture. Ambriola & To
(eds.), Advances in Software Engineering & Knowledge Engineering, vol. II, World
Scientific Pub Co., Singapore, 1993, pp. 1-39.

[Garlan et al., 1994] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design e
ronments. In Proceedings of the Second ACM SIGSOFT Symposium on the Foun
tions of Software Engineering (SIGSOFT‘94), New Orleans, Dec. 1994, pp. 175-18

[Garlan and Perry, 1995] D. Garlan and D. E. Perry. Introduction to the special issue on software architec
IEEE Transactions on Software Engineering, 21(4), Apr. 1995, pp. 269-274.

[Garlan et al., 1995] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch, or, Why it’s hard
build systems out of existing parts. In Proceedings of the 17th International Confer
on Software Engineering, Seattle, WA, 1995. Also appears as: Architectural misma
Why reuse is so hard. IEEE Software, 12(6), Nov. 1995, pp. 17-26.
28 Software Architectural Styles for Network-based Applications

. In

.

in-
n

tures

-T

ensed

e
er-

with

ision.

ser

995,

EE

ecifi-
tware

E

 archi-

dings of
g

ity in
nce
[Garlan et al., 1997] D. Garlan, R. Monroe, and D. Wile. ACME: An architecture description language
Proceedings of CASCON‘97, Nov. 1997.

[Ghezzi et al., 1991] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering
Prentice-Hall, 1991.

[Hayes-Roth et al., 1995] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and M. Balabanovic. A doma
specific software architecture for adaptive intelligent systems. IEEE Transactions o
Software Engineering, 21(4), Apr. 1995, pp. 288-301.

[Inverardi and Wolf, 1995] P. Inverardi and A. L. Wolf. Formal specification and analysis of software architec
using the chemical abstract machine model. IEEE Transactions on Software Engi-
neering, 21(4), Apr. 1995, pp. 373-386.

[ISO/IEC, 1995] ISO/IEC JTC1/SC21/WG7. Reference Model of Open Distributed Processing. ITU
X.901: ISO/IEC 10746-1, 07 June 1995.

[Jackson, 1994] M. Jackson. Problems, methods, and specialization. IEEE Software, 11(6), [cond
from Software Engineering Journal], Nov. 1994. pp. 57-62.

[Kazman et al., 1994] R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM: A method for analyzing th
properties of software architectures. In Proceedings of the 16th International Conf
ence on Software Engineering, Sorrento, Italy, May 1994, pp. 81-90.

[Kazman et al., 1999] R. Kazman, M. Barbacci, M. Klein, S. J. Carrière, and S. G. Woods. Experience
performing architecture tradeoff analysis. In Proceedings of the 1999 International
Conference on Software Engineering, Los Angeles, May 16-22, 1999, pp. 54-63.

[Kerth and Cunningham, 1997] N. L. Kerth and W. Cunningham. Using patterns to improve our architectural v
IEEE Software, 14(1), Jan. 1997, pp. 53-59.

[Krasner and Pope, 1988] G. E. Krasner and S. T. Pope. A cookbook for using the Model-View-Controller u
interface paradigm in Smalltalk-80. Journal of Object Oriented Programming, 1(3),
Aug.-Sep. 1988, pp. 26-49.

[Kruchten, 1995] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6), Nov. 1
pp. 42-50.

[Le Métayer, 1998] D. Le Métayer. Describing software architectural styles using graph grammars. IE
Transactions on Software Engineering, 24(7), Jul. 1998, pp. 521-533.

[Luckham et al., 1995] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. Sp
cation and analysis of system architecture using Rapide. IEEE Transactions on Sof
Engineering, 21(4), Apr. 1995, pp. 336-355.

[Luckham and Vera, 1995] D. C. Luckham and J. Vera. An event-based architecture definition language. IEE
Transactions on Software Engineering, 21(9), Sep. 1995, pp. 717-734.

[Magee et al., 1995] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
tectures. In Proceedings of the 5th European Software Engineering Conference
(ESEC‘95), Sitges, Spain, Sep. 1995, pp. 137-153.

[Magee and Kramer, 1996] J. Magee and J. Kramer. Dynamic structure in software architectures. In Procee
the Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineerin
(SIGSOFT‘96), San Francisco, Oct. 1996, pp. 3-14.

[Maybee et al., 1996] M. J. Maybee, D. H. Heimbigner, and L. J. Osterweil. Multilanguage interoperabil
distributed systems: Experience Report. In Proceedings 18th International Confere
on Software Engineering, Berlin, Germany, Mar. 1996.
Software Architectural Styles for Network-based Applications 29

rchi-
eering
s of

rsity

for
9
, pp.

gn

.

.

ley &

nd

volu-
,

rvey

ngs of

ommu-

nsac-

x
6.

M

. 57-62.

of

e
>.
[Medvidovic and Taylor., 1997] N. Medvidovic and R. N. Taylor. A framework for classifying and comparing a
tecture description languages. In Proceedings of the 6th European Software Engin
Conference held jointly with the 5th ACM SIGSOFT Symposium on the Foundation
Software Engineering, Zurich, Switzerland, Sep. 1997, pp. 60-76.

[Medvidovic, 1998] Architecture-based specification-time software evolution. Ph.D. Dissertation, Unive
of California, Irvine, Dec. 1998.

[Medvidovic et al., 1999] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A language and environment
architecture-based software development and evolution. In Proceedings of the 199
International Conference on Software Engineering, Los Angeles, May 16-22, 1999
44-53.

[Monroe et al, 1997] R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan. Architectural Styles, Desi
Patterns, and Objects. IEEE Software, 14(1), Jan. 1997, pp. 43-52.

[Moriconi et al., 1995] M. Moriconi, X. Qian, and R. A. Riemenscheider. Correct architecture refinement
IEEE Transactions on Software Engineering, 21(4), April 1995, pp. 356-372.

[Nii, 1986] H. Penny Nii. Blackboard systems. AI Magazine, 7(3):38-53 and 7(4):82-107, 1986

[OMG, 1995] Object Management Group. Object Management Architecture Guide, Rev. 3.0. So
Stone (eds.), New York: J. Wiley, 3rd ed., 1995.

[OMG, 1997] Object Management Group. The Common Object Request Broker: Architecture a
Specification (CORBA 2.1). <http://www.omg.org/>, Aug. 1997.

[Oreizy et al., 1998] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime software e
tion. In Proceedings of the 1998 International Conference on Software Engineering
Kyoto, Japan, Apr. 1998.

[Oreizy, 1998] P. Oreizy. Decentralized software evolution. Unpublished manuscript (Phase II Su
Paper), Dec. 1998.

[Parnas, 1971] D. L. Parnas. Information distribution aspects of design methodology. In Proceedi
IFIP Congress 71, Ljubljana, Aug. 1971, pp. 339-344.

[Parnas, 1972] D. L. Parnas. On the criteria to be used in decomposing systems into modules. C
nications of the ACM, 15(12), Dec. 1972, pp. 1053-1058.

[Parnas, 1979] D. L. Parnas. Designing software for ease of extension and contraction. IEEE Tra
tions on Software Engineering, SE-5(3), Mar. 1979.

[Parnas et al., 1985] D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular structure of comple
systems. IEEE Transactions on Software Engineering, SE-11(3), 1985, pp. 259-26

[Perry and Wolf, 1992] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. AC
SIGSOFT Software Engineering Notes, 17(4), Oct. 1992, pp. 40-52.

[Pountain et al., 1994] D. Pountain and C. Szyperski. Extensible software systems. Byte, May 1994, pp

[Prieto-Diaz et al., 1986] R. Prieto-Diaz and J. M. Neighbors. Module interconnection languages. Journal
Systems and Software, 6(4), Nov. 1986, pp. 307-334.

[Purtilo, 1994] J. M. Purtilo. The Polylith software bus. ACM Transactions on Programming
Languages and Systems, 16(1), Jan. 1994, pp. 151-174.

[Python, 1970] M. Python. The Architects Sketch. Monty Python’s Flying Circus TV Show, Episod
17, Sep. 1970. Transcript at <http://www.stone-dead.asn.au/sketches/architec.htm
30 Software Architectural Styles for Network-based Applications

develop-
ol.

EE

serva-
nfer-

menta-

le. In
s,

ge

trac-
ft-

, pp.

s.),
.

cipline.

f
al
ash-

olu-
,

mputing

. A.
l style
p.

(1),

ft-
[Rasure and Young, 1992] J. Rasure and M. Young. Open environment for image processing and software
ment. In Proceedings of the 1992 SPIE/IS&T Symposium on Electronic Imaging, V
1659, Feb. 1992.

[Reiss, 1990] S. P. Reiss. Connecting tools using message passing in the Field environment. IE
Software, 7(4), July 1990, pp. 57-67.

[Rosenblum and Wolf, 1997] D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event ob
tion and notification. In Proceedings of the 6th European Software Engineering Co
ence held jointly with the 5th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Zurich, Switzerland, Sep. 1997, pp. 344-360.

[Sandberg et al., 1985] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and imple
tion of the Sun network filesystem. In Proceedings of the Usenix Conference, June
1985, pp. 119-130.

[Shapiro, 1986] M. Shapiro. Structure and encapsulation in distributed systems: The proxy princip
Proceedings of the 6th International Conference on Distributed Computing System
Cambridge, MA, May 1986, pp. 198-204.

[Shaw, 1990] M. Shaw. Toward higher-level abstractions for software systems. Data & Knowled
Engineering, 5, 1990, pp. 119-128.

[Shaw et al., 1995] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnick. Abs
tions for software architecture and tools to support them. IEEE Transactions on So
ware Engineering, 21(4), Apr. 1995, pp. 314-335.

[Shaw, 1995] M. Shaw. Comparing architectural design styles. IEEE Software, 12(6), Nov. 1995
27-41.

[Shaw, 1996] M. Shaw. Some patterns for software architecture. Vlissides, Coplien & Kerth (ed
Pattern Languages of Program Design, Vol. 2, Addison-Wesley, 1996, pp. 255-269

[Shaw and Garlan, 1996] M. Shaw and D. Garlan. Software Architecture: Perspectives on an emerging dis
Prentice-Hall, 1996.

[Shaw and Clements, 1997] M. Shaw and P. Clements. A field guide to boxology: Preliminary classification o
architectural styles for software systems. In Proceedings of the Twenty-First Annu
International Computer Software and Applications Conference (COMPSAC‘97), W
ington, D.C., Aug. 1997, pp.6-13.

[Sinha, 1992] A. Sinha. Client-server computing. CACM, July 1992, pp. 77-98.

[Sullivan and Notkin, 1992] K. J. Sullivan and D. Notkin. Reconciling environment integration and software ev
tion. ACM Transactions on Software Engineering and Methodology, 1(3), July 1992
pp. 229-268.

[Tanenbaum et al.., 1985] A. S. Tanenbaum and R. van Renesse. Distributed Operating Systems. ACM Co
Surveys, 17(4), Dec. 1985, pp. 419-470.

[Taylor et al., 1996] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins, K
Nies, P. Oreizy, and D. L. Dubrow. A component- and message-based architectura
for GUI software. IEEE Transactions on Software Engineering, 22(6), June 1996, p
390-406.

[Tepfenhart and Cusick, 1997] W. Tephenhart and J. J. Cusick. A Unified Object Topology. IEEE Software, 14
Jan. 1997, pp. 31-35.

[Tracz, 1995] W. Tracz. DSSA (domain-specific software architecture) pedagogical example. So
ware Engineering Notes, 20(3), July 1995, pp. 49-62.
Software Architectural Styles for Network-based Applications 31

,

ll

.

attern

p.
[Umar, 1997] A. Umar. Object-Oriented Client/Server Internet Environments. Prentice Hall PTR
1997.

[Vestal, 1996] S. Vestal. MetaH programmer’s manual, version 1.09. Technical Report, Honeywe
Technology Center, April 1996.

[Waldo et al., 1994] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing.
Technical Report SMLI TR-94-29, Sun Microsystems Laboratories, Inc., Nov. 1994

[Zimmer, 1995] W. Zimmer. Relationships between design patterns. Coplien and Schmidt (eds.), P
Languages of Program Design, Addison-Wesley, 1995, pp. 345-364.

[Zimmerman, 1980] H. Zimmerman. OSI reference model --- The ISO model of architecture for open
systems interconnection. IEEE Transactions on Communications, 28, Apr. 1980, p
425-432.

10 Summary of Architectural Style Classification

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

PF ±±±± ++++ ++++ ++++ ++++ ++++

UPF PF −−−− ±±±± ++++++++ ++++ ++++ ++++++++ ++++++++ ++++

CS ++++ ++++ ++++

LS −−−− ++++ ++++ ++++ ++++

LCS CS+LS −−−− ++++++++ ++++ ++++++++ ++++ ++++

CSS CS −−−− ++++++++ ++++ ++++ ++++ ++++

C$SS CSS+$ −−−− ++++ ++++ ++++++++ ++++ ++++ ++++ ++++

LC$SS LCS+C$SS −−−− ±±±± ++++ ++++++++++++ ++++++++ ++++++++ ++++ ++++ ++++ ++++

RS CS ++++ −−−− ++++ ++++ −−−−

RDA CS ++++ −−−− −−−− ++++ −−−−

VM ±±±± ++++ −−−− ++++

REV CS+VM ++++ −−−− ±±±± ++++ ++++ −−−− ++++ −−−−

COD CS+VM ++++ ++++ ++++ ±±±± ++++ ++++ −−−−

LCODC$SS LC$SS+COD −−−− ++++++++ ++++++++ ++++4444++++ +±+±+±+±++++ ++++++++ ++++ ++++ ++++ ±±±± ++++ ++++

MA REV+COD ++++ ++++++++ ±±±± ++++++++ ++++ ++++ −−−− ++++

RR ++++++++ ++++ ++++

$ RR ++++ ++++ ++++ ++++

EBI ++++ ++++ − − − − −−−− ±±±± ++++ ++++ ++++ ++++ −−−− −−−−

C2 EBI+LCS ++++ ++++ ++++ ++++++++ ++++ ++++ ++++++++ ±±±± ++++ ±±±±

DO CS+CS −−−− ++++ ++++ ++++ ++++ −−−− −−−−

BDO DO+LCS −−−− −−−− ++++++++ ++++ ++++ ++++++++ −−−− ++++
32 Software Architectural Styles for Network-based Applications

	Software Architectural Styles for Network-based Applications
	1 Introduction
	2 Context within Software Architecture Research
	2.1 Software Architecture
	2.2 Architectural Styles
	2.3 Architectural Patterns and Pattern Languages
	2.4 Architectural Views

	3 Network-based Application Architectures
	3.1 Network-based vs. Distributed
	3.2 Application Software vs. Networking Software

	4 Classification Methodology
	4.1 Visualization
	4.2 Selection of Architectural Styles for Classification
	4.3 Style-induced Architectural Properties
	4.3.1 Performance
	4.3.2 Scalability
	4.3.3 Simplicity
	4.3.4 Modifiability
	4.3.5 Visibility
	4.3.6 Portability
	4.3.7 Reliability

	5 Architectural Styles for Network-based Applications
	5.1 Pipe and Filter (PF)
	5.1.1 Uniform Pipe and Filter (UPF)

	5.2 Client-Server (CS)
	5.2.1 Layered System (LS) and Layered-Client-Server (LCS)
	5.2.2 Client-Stateless-Server (CSS)
	5.2.3 Client-Cache-Stateless-Server (C$SS)
	5.2.4 Layered-Client-Cache-Stateless-Server (LC$SS)
	5.2.5 Remote Session (RS)
	5.2.6 Remote Data Access (RDA)

	5.3 Mobile Code
	5.3.1 Virtual Machine (VM)
	5.3.2 Remote Evaluation (REV)
	5.3.3 Code on Demand (COD)
	5.3.4 Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODC$SS)
	5.3.5 Mobile Agent (MA)

	5.4 Replication
	5.4.1 Replicated Repository (RR)
	5.4.2 Cache ($)

	5.5 Event-based Integration (EBI)
	5.6 Other Hybrid Styles
	5.6.1 C2
	5.6.2 Distributed Objects
	5.6.3 Brokered Distributed Objects

	6 Related Work
	6.1 Classification of Architectural Styles and Patterns
	6.2 Distributed Systems and Programming Paradigms
	6.3 Middleware
	6.4 Handbooks for Design, Design Patterns, and Pattern Languages
	6.5 Design Methodologies
	6.6 Reference Models and Domain-specific Software Architectures (DSSA)
	6.7 Architecture Description Languages (ADL)
	6.8 Formal Architectural Models

	7 Conclusions
	8 Acknowledgments
	9 References
	10 Summary of Architectural Style Classification

