
88

JULY • AUGUST 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

THE APACHE
HTTP SERVER
PROJECT
Most reports of Internet collaboration refer to

small-scale operations among a few authors or

designers. However, several projects have

shown that the Internet can also be the locus

for large-scale collaboration.

In these projects, contributors from around the world
combine their individual forces and develop a product
that rivals those of multibillion dollar corporations.

The Apache HTTP Server Project* is a case in point.
This collaborative software development effort has created
a robust, feature-rich HTTP server software package that
currently dominates the public Internet market (46 per-
cent compared with 16 percent for Microsoft and 12 per-
cent for Netscape, according to a June 1997 survey* pub-
lished by Netcraft). The software and its source code are
free, but Apache’s popularity is more often attributed to
performance than price.

The project is managed by the Apache Group, a geo-
graphically distributed group of volunteers who use the
Internet and Web to communicate, develop, and distrib-
ute the server and its related documentation. In addition,
hundreds of users have contributed ideas, code, and docu-
mentation to the project.

ORIGINS OF THE PROJECT
Prior to Apache, the most popular server software on the
Web was the public domain HTTP “daemon” (httpd),
developed by Rob McCool at the National Center for
Supercomputing Applications,* University of Illinois at
Urbana-Champaign. However, after McCool left NCSA
in mid-1994 to work for Netscape, development of
NCSA httpd stalled, and many Webmasters began to
develop their own extensions and bug fixes.

In February 1995 a small group of these Webmasters
gathered together via the Internet to coordinate their
changes and produce a common distribution. A mailing
list, shared information space (FTP- and HTTP-served
directories), and logins for the core developers were creat-
ed on a machine in California’s San Francisco Bay area,

with bandwidth and disk space donated by HotWired*
and Organic Online.*

Less than a year after its first release, the Apache server
surpassed NCSA’s httpd as the leading server on the Inter-
net. By June 1997, the Netcraft survey reported more than
a half million Web sites using Apache and its derivatives.

PROCESS CONTEXT
Choosing appropriate methods and tools for collaboration
depends on the process context: where, when, and how
each project member is able to communicate their ideas
and plans, and work with other team members. Even the
most ideal tool for communication is useless if it cannot
run on all platforms used by those who need to communi-
cate. Likewise, a method of interaction that requires a cer-
tain type of work behavior (for example, availability for a
teleconference at a certain time of day) will fail if that
behavior is not shared.

Apache’s process context has been dominated by its glob-
al distribution and voluntary organizational environment.
It has always been a multinational project, with the core
developers located in the US, Britain, Canada, and Italy,
and significant contributions from developers in many
other countries. Collaboration within the group is hindered
by the variation in work schedules and the effect of cross-
Atlantic network latency and by restrictions of national
export controls. It is too expensive to connect the entire
group by telephone and too cumbersome/lossy to use the
network as the conduit for synchronous voice or video con-
ferencing. In any case, the group has yet to find a time at
which any large portion of the project participants can be
tied to their terminals for synchronous collaboration.

Each Apache Group volunteer has (at least) one other
“real” job, usually related to either Web services or protocol
research. They collaborate on producing and supporting
the Apache server out of enlightened self-interest: by pool-
ing their efforts, the resulting product is much more func-
tional and robust than anything they could have produced
alone. In contrast to traditional software development pro-
jects, all coordination tasks are entirely voluntary: There is
no Apache CEO, president, manager, or even secretary.
People volunteer for needed tasks and rotate tasks when
they get tired or too busy to continue. Decisions are made
by consensus (for code changes or legal issues) or by major-
ity vote, with the voting taking place via the mailing list.
As a result, a decision that requires input from all of the
active members usually takes about 36 hours.

The constraints generated by the Apache process are not
all bad. Because project communication is limited to e-mail,
it can be automatically archived for later use. There is no
need to take meeting notes or to transcribe design decisions
after the fact, and thus nothing is irretrievably lost. Ideas

COLLABORATIVE WORKCOLLABORATIVE WORK
C O L U M N

Roy T. Fielding • University of California at Irvine • fielding@ics.uci.edu
Gail Kaiser • Columbia University • kaiser@cs.columbia.edu

.

can be revisited over time, and new project members can
read the entire archive when they join, thereby gaining an
understanding of the project history, which is often more
complete than the memory of the original contributors.

Furthermore, because the entry barrier for participation
is low and requires no expensive hardware or software, the
pool of potential contributors is huge.

COLLABORATION METHODS AND TOOLS
Effective large-scale collaboration requires

■ a large pool of potential contributors (people);
■ at least one common goal;
■ a means for communication, both public (one to all,

recorded for later review) and private (one to a few, to
resolve personal conflicts);

■ a shared information space for access to both current and
past communication and development artifacts; and

■ coordination, for all of the above to work in concert.

Developer Mailing List
The developer mailing list has been the primary means of
public communication for Apache. Averaging 50 messages a
day, with peaks of over 200 messages on days near a software
release, topics include designs for new features, bug fixes,
user problems, news about the Web community, product
release dates, and project strategy. Private e-mail is reserved
for resolving localized conflicts between group members, or
when the discussion includes confidential information.

Tracking progress and potential conflicts has often result-
ed in a deluge of e-mail. Maintaining an adequate archive of
that communication requires more sophisticated data man-
agement and retrieval techniques than string pattern-search-
ing or hypertext reply-threading can supply. Although most
e-mail discussions can be automatically categorized and
threaded, Internet mail applications vary to such an extent
that an “e-mail librarian” interface is needed to manually
fix incorrectly categorized or threaded discussions.

Unfortunately, existing hypertext e-mail archival systems,
such as Hypermail* and MHonArc,* are batch-oriented and
do not provide such an interface. To handle a list with such a
large volume of traffic, an archival system must provide views
at varying levels of abstraction, such that the archive can be
browsed without displaying too much information at once.

Change Control
At first, the Apache Group members relied solely on e-mail
and FTP for project collaboration. A proposed change would
be sent to the mailing list in the form of a patch (the set of
differences between the current and proposed versions of the
file(s) being changed), interested developers would apply and
test the change on their own systems, and then the core
developers would vote on its inclusion in the distributed soft-
ware system. Coordination was achieved by numbering each
patch and having a volunteer patch coordinator manually
maintain and circulate the list of proposed patches. A vote
coordinator (possibly the same person) would announce a
voting period, generally in relation to the next proposed
release date, and tally the votes for each patch. Finally, a

release builder would take the list of approved patches and
apply them to a copy of the last release, and then use FTP to
store this new release in the shared information space.

Although this patch-vote-release process was effective in
controlling quality, it was cumbersome and often frustrat-
ing. Proposed patches frequently overlapped or were reject-
ed due to minor problems, causing weeks of delay.
Attempts to centralize and automate the patch and vote
coordination tasks via a Web-based forms interface failed
because of the network latency problem: It was easier for
members to simply reply to an e-mail message than con-
nect to a remote Internet site and fill out a form.

CVS. Switching to the Concurrent Versions System* made it
easier to apply and track patches. In this system, the project’s
current software base, documentation, and information files
are held in CVS repositories. Core developers can check out
a copy of the repository, in essence replicating it on their own
machines. The developers can change files and test as needed,
and selectively commit those changes back to the central
repository using a single CVS command. A change to the
repository triggers an e-mail message describing the change.
This message is sent to a separate mailing list to which any-
one can subscribe. Other developers can then use a CVS
command that searches for modifications to the remote
repository and merges them into the copy on their machine.

GNATS. Although CVS made it easier to apply and track
changes, it did nothing to support the tracking of unsolved
problems. Thus a central problem-tracking system with
both Web and e-mail interfaces was installed. The Apache
project currently uses the Gnu Problem Report
Management System.* A more recently developed system
called PTS (Project Tracking System) is now available. This
system embeds directly into an Apache server and uses a
back-end database system for all transactions.

SSH. With improved remote access to the information
space came increased network security risks. Developers
could not execute the remote CVS commands without their
system passwords being sent in the clear over the Internet.
To address this problem, the group installed the SSH
(Secure Shell) Remote Login Program* on all of the devel-
opment systems. SSH provides strong authentication using
several public key methods, operates transparently for execu-
tion of remote commands or logins, and automatically
encrypts all communication. Although the Apache project
itself hasn’t required encrypted communication, an Internet-
based project that dealt with confidential materials (such as
proprietary source code) would find it a necessity.

The mailing list, CVS, GNATS, and SSH have supported
low-level coordination: retaining project history, tracking
problems and revisions, providing and controlling remote
access, and preventing change collisions (the “lost update
problem”). However, Apache has yet to find a means to
improve automation of the group decision-making process,
that is, for deciding what changes should be made and
when and for tracking progress of development efforts.

C O L L A B O R A T I V E W O R K

89

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1997

.

BEING VIRTUAL
Apache is the ultimate virtual enterprise. Developers share
no corporate ties or traditional organizational infrastruc-
ture, all significant communication takes place via the
Internet, and the participants are free to join or leave the
project at any time. However, Apache succeeds largely
because of the unusual expertise of its user/developers. All
are Internet experts, experienced in communicating rapidly
via e-mail and capable of installing the specialized software
tools needed to support such large-scale collaboration.

The future of Internet collaboration will depend on the
extent to which support for collaboration and project
coordination can be built into the Internet’s infrastructure.
The applications that enable such collaboration will need
to be easy to use and pre-installed on the collaborators’
desktops, just as existing World Wide Web browsers are
nearly ubiquitous on Internet-accessible computers.

An Internet Engineering Task Force* working group on
Distributed Authoring and Versioning on the World Wide
Web (WEBDAV)* was created in mid-1996 to enable broad
interoperability of distributed Web content authoring tools
(see the Collaborative Work column from March/April*).
The OzWeb* project is adding project-specific subweb orga-
nization to the Web with an object-oriented database
veneer. The subweb enables workflow modeling and enact-
ment, semantics-based concurrency control and failure
recovery, tool launching and management, and other group-
space services on top of the Web infrastructure. Similarly,
the Endeavors* project is developing a lightweight, flexible
execution infrastructure for process coordination and
automation. The Endeavors development environment
allows user/developers to build workflow process descrip-
tions visually, and components of the process—as well as the
means to execute it—can be deployed via Java applets in
Web pages and e-mail attachments.

An interesting lesson of the Apache experience is that
the best tools for large-scale Internet collaboration are
those that effectively minimize actual use of the Internet.
Disconnected operation—the ability to perform work
without being blocked by network delays and failures—is
essential when the network is uncontrolled or spans long
distances. The characteristics of e-mail (store-and-forward
message processing) and remote CVS (replicated work-
spaces with batch-oriented update and commit) reflect the
needs of Internet-based collaboration, and thus provide
valuable lessons for future collaborative tools.

USER-DRIVEN DEVELOPMENT
Aside from the server’s mere existence, the Apache project
has yielded some unusual benefits from the large-scale
Internet collaboration. These observations are based on the
Apache experience, but similar benefits have accrued to
other collaborative projects, such as The Internet Movie
Database* and Linux.*

Apache is best characterized as a user-driven develop-
ment: The developers of the system are also its biggest cus-
tomers. Because the developers have full access to produc-
tion systems, the software can be thoroughly tested on
those systems before it is publicly released. This forces the

core developers to act as quality control, and gives them
better insight into what features will actually be useful to
other end-users. Likewise, the large variation between the
needs of individual Web sites leads the developers to
emphasize more extensible designs and a modular API.

Although the Apache Group does not officially support
the server via guaranteed service contracts, the actual soft-
ware support tends to be significantly better than its com-
mercial competition. All problem reports and answers are
publicly available via the problem-tracking database. User
installation and configuration questions are answered via a
public newsgroup, with most such answers coming from
users outside the core developers. When a problem is
found, a patch to fix the problem is usually generated
within a week and made publicly available. Likewise, all of
the software distribution is accomplished via the Web.

With a half million Web sites using the Apache server, all
with complete access to the software source code, there is an
unlimited supply of ideas (good and bad) for new features and
improvements. Even if all of the existing core developers were
to leave the project, development of the server would continue.
Fortunately, Internet collaboration is not just successful—
it’s addictive! It is likely that such projects will increase dra-
matically as more people become accustomed to the
Internet, and as the Internet becomes more accustomed to
collaborative applications. ■

ACKNOWLEDGMENTS
Eight core contributors founded the original Apache Group: Brian
Behlendorf, Roy T. Fielding, Rob Hartill, David Robinson, Cliff Skolnick,
Randy Terbush, Robert S. Thau, and Andrew Wilson. They were later
joined by Ken Coar, Mark J. Cox, Dean Gaudet, Jim Jagielski, Alexei
Kosut, Ben Laurie, Chuck Murcko, Aram W. Mirzadeh, Sameer Parekh,
Marc Slemko, Paul Sutton, and Dirk-Willem van Gulik. There are many
other regular contributors to the project.*

C O L U M N

90

JULY • AUGUST 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

URLs FOR THIS COLUMN
*Apache HTTP Server Project • www.apache.org/
*Apache project contributors • www.apache.org/contributors/
*Collaborative Work: Distributed Authoring and Versioning •
computer.org/Internet/9702/collab9702.htm
*CVS • www.cyclic.com/cyclic-pages/CVS-sheet.html
*Endeavors • www.ics.uci.edu/pub/endeavors/
*GNATS • www.alumni.caltech.edu/~dank/gnats.html
*HotWired • www.hotwired.com/
*Hypermail • www.eit.com/software/hypermail/
*IETF • www.ietf.org/
*Internet Movie Database • www.imdb.com/
*Linux • www.linux.org/
*MHonArc • www.oac.uci.edu/indiv/ehood/mhonarc.html
*NCSA • www.ncsa.uiuc.edu/
*Netcraft June 1997 Survey • www.netcraft.co.uk/Survey/
*Organic Online • www.organic.com/
*OzWeb • www.psl.cs.columbia.edu/ozweb.html
*PTS • www.homeport.org/~shevett/pts/
*SSH Remote Login Program • www.cs.hut.fi/ssh/

.

