
The Rest of REST

Roy T. Fielding, Ph.D.

Chief Scientist, Day Software
V.P., Apache HTTP Server

http://roy.gbiv.com/talks/200709_fielding_rest.pdf
Tuesday, September 18, 2007

http://roy.gbiv.com/talks/200709_fielding_rest.pdf
http://roy.gbiv.com/talks/200709_fielding_rest.pdf

Overview

Representational State Transfer (REST)

• A little background

- WWW history + Roy history = REST context

- Why do we need a Web architectural style?

• A touch of theory

- Principled design

- Architectural properties

- Constraints that induce properties

• What parts of REST are missing from Ruby on Rails?

• Industry reactions to REST

- and a little bit of Relaxation

2

Between us, we cover all knowledge;
he knows all that can be known and I know the REST. [Mark Twain]

Tuesday, September 18, 2007

Jun 93 Dec 93 Jun 94 Dec 94 Jun 95

130
623

2,738

10,022

23,517

Why me?

3

Public WWW servers [Matthew Gray]

Using XMosaic

www.ics.uci.edu

wwwstat

MOMspider

Conditional
GET

1st WWW

Relative
URLs

HTML
2.0

2nd WWW

HTTP editor

SJ IETF

R
ES

T
B
EG

IN
S

A
S

H
TT

P
O

B
JE

CT
 M

O
D
ELlibwww-

perl

Life's race will run, Life's work well done, Life's victory won,
Now cometh REST. [Dr. Edward Hazen Parker]

Sep 07 = 135,166,473 (5,748x)

Tuesday, September 18, 2007

http://www.ics.uci.edu
http://www.ics.uci.edu
http://www.ics.uci.edu
http://www.ics.uci.edu

The Problem (circa 1994)

Early architecture was based on solid principles

• URLs, separation of concerns, simplicity

• lacked architectural description and rationale

Protocols assumed a direct server connection

• no awareness of caching, proxies, or spiders

• many independent extensions

Public awareness of the Web was just beginning

• exponential growth threatened the Internet

• commercialization meant new requirements and
new stakeholders

A modern Web architecture was clearly needed

• but how do we avoid breaking the Web in the process?

4

Absence of occupation is not REST,
A mind quite vacant is a mind distress'd. [William Cowper]

Tuesday, September 18, 2007

5

Software Architectures

A software architecture is an abstraction of the run-
time elements of a software system during some
phase of its operation. A system may be composed
of many levels of abstraction and many phases of
operation, each with its own software architecture.

• A software architecture is defined by a configuration of
architectural elements—components, connectors, and
data—constrained in their relationships in order to achieve
a desired set of architectural properties.

• A configuration is the structure of architectural relationships
among components, connectors, and data during a period
of system run-time.

Everywhere I have sought REST and not found it, except
sitting in a corner by myself with a little book. [Thomas Kempis]

Tuesday, September 18, 2007

Architectural Styles

An architectural style is a coordinated set of
architectural constraints that restricts the roles and
features of architectural elements, and the allowed
relationships among those elements, within any
architecture that conforms to that style.

• A style can be applied to many architectures

• An architecture can consist of many styles

Design at the right level of abstraction

• Styles help architects communicate architecture

• Architecture determines potential system properties

• Implementation determines actual system properties

• Architectural patterns are styles with common recipes

6

Da requiem; requietus ager bene credita reddit. [Ovid]
(Take REST; a field that has RESTed gives a bountiful crop.)

Tuesday, September 18, 2007

What is the Web, really?

7

Browsers

Protocols

Information

Oh, some seek bread--no more--life's mere subsistence, ...

Tuesday, September 18, 2007

Web Implementation

8

... And some seek wealth and ease--the common quest; ...

Tuesday, September 18, 2007

Web Architecture

One abstraction level above the implementation

Components

• User agents, Intermediaries, Servers

• Browsers, Spiders, Proxies, Gateways, Origin Servers

Connectors

• HTTP: a standard transfer protocol to prefer over many

Data

• URI: one identifier standard for all resources

• HTML, XML, RDF, ...: common representation formats to
describe and bind resources

9

... And some seek fame, that hovers in the distance; ...

Tuesday, September 18, 2007

Web Architectural Style

One abstraction level above Architecture

• two abstraction levels above implementation

• that’s one too many for most folks

An architectural style is a set of constraints

• unfortunately, constraints are hard to visualize

- kind of like gravity or electromagnetism

- observed only by their effect on others

Constraints induce architectural properties

• both desirable and undesirable properties

- a.k.a., software qualities

- a.k.a., design trade-offs

10

... But all are seeking REST.
[Rev. Frederick Langbridge]

Tuesday, September 18, 2007

11

Web Requirements

Low entry barrier
- Hypermedia User Interface

- Simple protocols for authoring and data transfer

• a.k.a., must be Simple, Reusable, and Extensible

Distributed Hypermedia System
- Large data transfers

- Sensitive to user-perceived latency

• a.k.a., must be Data-driven, Streamable, and Cacheable

Multiple organizational boundaries
- Anarchic scalability

- Gradual and fragmented change (deployment)

• a.k.a, must be Scalable, Evolvable, Visible, Reliable, ...

REST is not quitting the busy career;
REST is the fitting of self to its sphere. [John Sullivan Dwight]

Tuesday, September 18, 2007

REST on a slide

85

the disadvantages) of the optional constraints when they are known to be in effect for some

realm of the overall system. For example, if all of the client software within an

organization is known to support Java applets [45], then services within that organization

can be constructed such that they gain the benefit of enhanced functionality via

downloadable Java classes. At the same time, however, the organization’s firewall may

prevent the transfer of Java applets from external sources, and thus to the rest of the Web

it will appear as if those clients do not support code-on-demand. An optional constraint

allows us to design an architecture that supports the desired behavior in the general case,

but with the understanding that it may be disabled within some contexts.

5.1.8 Style Derivation Summary

REST consists of a set of architectural constraints chosen for the properties they induce on

candidate architectures. Although each of these constraints can be considered in isolation,

describing them in terms of their derivation from common architectural styles makes it

Figure 5-9. REST Derivation by Style Constraints

RR CS LS VM U

CSS LCS COD$

C$SS LC$SS LCODC$SS REST

replicated

on-demand

separated

layered

mobile

uniform interface

stateless

shared

intermediate

processing

cacheable

extensible

simple

reusable

scalable

reliable

multi-
org.

visible

programmable

12

Sometimes the most urgent and vital thing you can possibly do
is take a complete REST. [Ashleigh Brilliant]

Tuesday, September 18, 2007

13

Style = nil

WWW

Starting from a condition of no constraints…

How beautiful it is to do nothing,
and then REST afterward. [Spanish Proverb]

Tuesday, September 18, 2007

14

Style += Client/Server

Apply separation of concerns: Client-Server

improves UI portability simplifies server

enables multiple organizational domains

REST is not idleness, ...

Tuesday, September 18, 2007

15

Style += Stateless

Constrain interaction to be stateless…

simplifies server

improves scalability

improves reliability

degrades efficiency

... and to lie sometimes on the grass ...

Tuesday, September 18, 2007

16

Style += Caching

Add optional non-shared caching

reduces average latency

improves efficiency

improves scalability

degrades reliability

$

$

... under the trees on a summer's day, ...

Tuesday, September 18, 2007

17

Style += Uniform Interface

Apply generality: uniform interface constraint

$

$

$

decouples implementation

improves visibility

degrades efficiency independent evolvability

... listening to the murmur of water, ...

Tuesday, September 18, 2007

18

Style += Layered System

Apply info hiding: layered system constraints

shared caching legacy encapsulationadds latency

$

$

$

$

$

$

$

$

load balancingimproves scalabilitysimplifies clients

... or watching the clouds float across the sky, ...

Tuesday, September 18, 2007

19

REST Style

Finally, allow code-on-demand (applets/js)

reduces visibilityimproves extensibilitysimplifies clients

$

$

$

$

$

$

$

$

... is by no means a waste of time. [Sir John Lubbock]

Tuesday, September 18, 2007

20

REST Uniform Interface

All important resources are identified by one
resource identifier mechanism

- simple, visible, reusable, stateless communication

Access methods (actions) mean the same for all
resources (universal semantics)

- layered system, cacheable, and shared caches

Resources are manipulated through
the exchange of representations

- simple, visible, reusable, cacheable, and
stateless communication

Exchanges occur in self-descriptive messages

- layered system, cacheable, and shared caches

Tuesday, September 18, 2007

REST Uniform Interface

Hypertext as the engine of application state

• A successful response indicates (or contains) a current
representation of the state of the identified resource;
the resource remains hidden behind the server interface.

• Some representations contain links to potential next
application states, including direction on how to transition
to those states when a transition is selected.

• Each steady-state (Web page) embodies
the current application state
- simple, visible, scalable, reliable, reusable, and

cacheable network-based applications

• All application state (not resource state) is kept on client

• All shared state (not session state) is kept on origin server

21

Tuesday, September 18, 2007

Hypertext Clarification

Hypertext has many (old) definitions
• "By 'hypertext,' I mean non-sequential writing — text that branches and allows

choices to the reader, best read at an interactive screen. As popularly conceived,
this is a series of text chunks connected by links which offer the reader different
pathways" [Theodor H. Nelson]

• “Hypertext is a computer-supported medium for information in which many
interlinked documents are displayed with their links on a high-resolution
computer screen.” [Jeffrey Conklin]

When I say Hypertext, I mean ...

• The simultaneous presentation of information and controls
such that the information becomes the affordance through
which the user obtains choices and selects actions.

• Hypertext does not need to be HTML on a browser

- machines can follow links when they understand
the data format and relationship types

22

Tuesday, September 18, 2007

REST Rationale

Maximizes reuse

• uniform resources having identifiers = Bigger WWW
• visibility results in serendipity

Minimizes coupling to enable evolution

• uniform interface hides all implementation details
• hypertext allows late-binding of application control-flow
• gradual and fragmented change across organizations

Eliminates partial failure conditions

• server failure does not befuddle client state
• shared state is recoverable as a resource

Scales without bound

• services can be layered, clustered, and cached

Simplifies, simplifies, simplifies
23

Tuesday, September 18, 2007

What is missing from Rails?

Just newbie speculation, without looking at edge:

Uniform method semantics?

• Rails support (via CRUD) is outstanding

• but what happens when I add a new HTTP method?

Resource identifiers for important resources?

• Route configs are good, but code-structure dependent

• URI templates would be better, IMO

Resources manipulated as representations?

• Rails has excellent support for alternative data formats

Hypertext as the engine of application state?

• Is this just assumed? Can it be guided by Rails?

24

REST when you're weary. Refresh and renew yourself, your body,
your mind, your spirit. Then get back to work. [Ralph Marston]

Tuesday, September 18, 2007

A little relaxation

Roy T. Fielding, Ph.D.

Chief Scientist, Day Software
V.P., Apache HTTP Server

http://roy.gbiv.com/talks/200709_fielding_rest.pdf
Tuesday, September 18, 2007

http://roy.gbiv.com/talks/200709_fielding_rest.pdf
http://roy.gbiv.com/talks/200709_fielding_rest.pdf

Industry Practice

Meanwhile, in a parallel universe ...

• http://www.youtube.com/watch?v=-RxhkWLJH4Y

• Microsoft was selling COM+/DCOM

• IBM and friends were selling CORBA

• Sun was selling RMI

• W3C was developing XML

Then SOAP was dropped on the shower floor
as an Internet Draft

• and quickly laughed out of the IETF

• only to be picked up by IBM and renamed “Web Services”

and REST became the only counter-argument
to multi-billions in advertising

26

Client: Excuse me. Did you say knives?
Architect: Rotating knives, yes. [Monty Python’s Flying Circus]

Tuesday, September 18, 2007

http://www.youtube.com/watch?v=-RxhkWLJH4Y
http://www.youtube.com/watch?v=-RxhkWLJH4Y

Industry Reaction?

Not very constructive

• proponents labeled as RESTafarians

• arguments derided as a “religion”

• excused as “too simple for real services”

Service-Oriented Architecture (SOA)

• a direct response to REST

• attempt at an architectural style for WS

- without any constraints

• What is SOA?

- Wardrobe, Musical Notes, or Legos?

- http://www.youtube.com/profile_videos?
user=richneckyogi

27

Cast off the cares that have so long oppressed;
REST, sweetly REST! [Jane Laurie Borthwick]

Tuesday, September 18, 2007

Industry Acceptance

Something has changed ...

• People started to talk about the value of URIs
(reusable resources)

• Google maps decided to encourage reuse (Mashups)

• O’Reilly began talking about Web 2.0

• Rails reminded people that frameworks can be simple

and REST(ful) became the next industry buzzword

Yikes!

28

REST is sweet after strife. [Lord Edward Robert Bulwer Lytton]

Tuesday, September 18, 2007

Relaxation

Clearly, it’s time to start messing with minds

• REST is not the only architectural style

• My dissertation is about Principled Design,
not the one true architecture

What do constraints really mean?

• codify a design choice at the level of architecture

• to induce certain (good) architectural properties

• at the expense of certain (bad) trade-offs

What happens when we relax a given constraint?

• Is it really the end of the world?

• Should waka (a replacement for HTTP) have its own style?

29

Men, in whatever anxiety they may be, if they are men,
sometimes indulge in relaxation. [Marcus Tullius Cicero]

Tuesday, September 18, 2007

Relax uniform methods ?

What happens when we let the interface be
resource-specific?

• URI is no longer sufficient for resource identification

- lose benefit of URI exchange (assumed GET)

- require resource description language

• Information becomes segregated by resource type

- walled into gardens (loss of power laws / pagerank)

- important information must be replicated

• Intermediaries cannot encapsulate services

- unable to anticipate resource behavior

- too complex to cache based on method semantics

• No more serendipity

30

Tuesday, September 18, 2007

Relax client/server ?

What happens when we let servers make requests?

• lose implementation simplicity due to listening,
additional parsing requirements

• potential for confusion with mixed-protocol intermediaries

• unknown: does it impact session state?

Trade-offs aren’t as severe as the first example.
Benefits?

• peer-to-peer applications

• shared cache mesh, triggered expiration

Can we find ways to compensate for the trade-offs?

• Make message syntax more uniform

- Limit server-initiated requests to same-connection

31

For too much REST itself becomes a pain.
[Homer, The Odyssey]

Tuesday, September 18, 2007

Conclusion

Use your brains!

• don’t design-by-buzzword

• don’t believe everything you read

• always keep in mind that change is inevitable

• use principled design

- identify desired architectural properties

- constrain behavior to induce properties

- compensate for the inevitable design trade-offs

32

Let the weary at length possess quiet REST.
[Lucius Annaeus Seneca]

Tuesday, September 18, 2007

